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ABSTRACT 

We describe a method for direct, quantitative, in vivo lipid profiling of oil producing microalgae 

using single-cell laser-trapping Raman spectroscopy (LTRS). This approach is demonstrated in  

the quantitative determination of the degree of unsaturation and transition temperatures of 

constituent lipids within microalgae. These properties are important markers for determining 

engine compatibility and performance metrics of algal biodiesel.  We show that these factors can 

be directly measured from a single living microalgal cell held in place with an optical trap while 

simultaneously collecting Raman data. Cellular response to different growth conditions is  

monitored in real time. Our approach circumvents the need for lipid extraction and analysis that 

is both slow and invasive. Furthermore, this technique yields real-time chemical information in a 

label-free manner, thus eliminating the limitations of impermeability, toxicity and specificity of 

the fluorescent probes used in other common protocols. Although the single-cell Raman 

spectroscopy demonstrated here is focused on the study of the microalgal lipids with biofuel 

applications, the analytical capability and quantitation algorithms demonstrated are applicable to 

many different organisms, and should prove useful for a diverse range of applications in 

lipidomics. 
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INTRODUCTION 

The global concerns surrounding unabated fossil fuel consumption and the risk of significant 

environmental impact due to the associated greenhouse gas emissions, compounded by potential 

challenges associated with land-based biofuels1, have renewed significant interest in microalgae 

as an alternative feedstock for the production of biodiesel and other biofuels. Microalgae hold 

considerable promise because of their ability to synthesize and store lipids, such as fatty acids 

and triacylglycerols (TAGs), that can be readily converted into biodiesel (fatty acid methyl or 

ethyl esters) through relatively simple chemical reactions2. Small yet efficient, microalgae are 

attractive for many reasons including their (1) rapid, cost-effective, and resource-efficient 

production including on non-arable land or photobioreactors (PBR)3, and with impaired water 

and (2) significant lipid production - up to 20-50% of their total dry weight, with examples of up 

to 80% under certain conditions reported4. It has been estimated that lipid production of 

microalgae could be 30 times more efficient in terms of relative production of lipids per acre per 

year than any other terrestrial plant oil feedstock5, 6.  

 
 
Under optimal growth conditions, microalgae synthesize fatty acids in the form of various 

glycerol-based membrane lipids primarily for structural and functional roles7. In contrast, under 

adverse environmental or metabolic stress conditions such as nutrient limitation, also known as 

“lipid trigger” conditions, lipid biosynthetic pathways in many microalgae are hypothesized to be 

upregulated in favor of the formation and accumulation of substantial proportions of neutral 

lipids (20 - 50% of dry weight), mainly in the form of TAGs. These TAGs are a form of efficient 

energy storage within the microalgae, stored as dense lipid bodies. It is also reported that the 

lipid trigger conditions result in low growth rates for the algae, thereby placing an upper limit on 
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the total lipid production that can be achieved under these conditions5, 8. Novel strain selection, 

genetic and physiological manipulations may offer solutions that shift this balance between 

growth rate and lipid biosynthesis, but require facile methods that establish correlations between 

lipid trigger conditions, growth rate, and lipid production.  

 

Lipid content within microalgae, as in the general field of lipidomics9 , is commonly analyzed 

using solvent extraction based methodologies, with the lipids subsequently quantified 

gravimetrically10-12. Further separation and analysis of lipids can be carried out using 

chromatography (GC or HPLC)13, mass spectrometry14, or NMR15. These steps provide 

compositional identification of the extracted lipids but are relatively time and effort-intensive. 

Moreover, the information linking cellular dynamics and functionality is often lost during the 

homogenization step typically required for these assays, and therefore they become less useful 

for understanding and controlling the fundamental biological processes needed for developing 

physiological manipulation and metabolic engineering methods. Staining microalgae cells with 

an environmentally-sensitive lipid-soluble fluorescent probes (e.g., Nile Red) that can 

discriminate between neutral and polar lipid environments has been shown to allow single-cell 

lipid analyses, including high-throughput techniques16, 17. While useful, these approaches are 

limited by the availability of photostable fluorescent lipid probes with a well-characterized 

partitioning preference.  For some species of microalgae these fluorescent probes can be toxic or 

impermeable, and their observation can be confounded by the auto-fluorescence from 

photosynthetic pigments such as carotenoids18, 19(Supplementary Fig. 1). Moreover, these 

approaches provide little chemical information about the lipids, such as the composition, degree 

of unsatuaration, and chain length. Since these chemical characteristics ultimately determine the 
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quality of the derived biofuel, including viscosity, cloud point, burning efficiency, cetane rating 

and stability against oxidation and polymerization20, alternative approaches that offer direct and 

rapid quantification of lipid properties are highly desirable. 

 

Raman spectroscopy offers an attractive alternative for deriving direct quantitative chemical 

information in a label-free, nondestructive, and real-time manner at the single cell level without 

requiring any exogenous modification of samples21. Specifically, laser-trapping Raman 

spectroscopy (LTRS), a combination of a near-IR optical trap22 and a micro-Raman system23, 24, 

is particularly well-suited to meet these requirements. It produces in vivo spectra from single 

living cells with higher signal-to-noise ratios than conventional Raman measurements performed 

on bulky and dried algal samples25, 26 and enables a new level of quantitative analysis. As 

demonstrated in this work, after building a Raman spectral library of model microalgal lipids that 

can be used to readily determine quantitative information such as the degree of unsaturation 

(quantified by the average number of C=C bonds per lipid molecule), lipid chain length, and 

melting temperature (Tm) of the constituent fatty acids in microalgae can be performed on a 

single living cell. We have obtained and interpreted in vivo single-cell Raman spectra of several 

algal species of interest to bioenergy, including Botryococcus braunii (B. braunii), Neochloris 

oleoabundans (N. oleoabundans) and Chlamydomonas reinhardtii (C. reinhardtii). Our approach 

of interrogating single cells for information related to growth and lipid production should not 

only pave the way for direct and rapid screening of microalgae, but also enable the optimization 

and selection of species and growth conditions and rapidly test the efficacy of physiological and 

genetic manipulations.  

 
RESULTS 
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Experimental setup 

The single-cell LTRS setup combines an optical trap and a micro-Raman system with a confocal 

pinhole setup (Online Methods) in a single custom-built configuration. The micro-Raman system 

consists of a 785-nm laser (also used for the optical trap), an inverted microscope with a 60X 1.2 

numerical aperture (NA) lens fitted with a filter set to clean the laser and block Rayleigh 

scattering, a spectrograph, and a CCD detector (Fig. 1). For samples of microalgae suspended in 

their native growth media or other aqueous buffer, the laser focused by the high NA objective 

forms an optical trap that immobilizes a cell and also allows lifting it several micrometers from 

the bottom to avoid surface-induced perturbations. Signals from regions outside the sample point 

are rejected by the confocal pinhole affording high signal-to-noise ratio needed for single cell 

spectroscopy. Since a trapped cell is in a large reservoir of aqueous buffer, the temperature 

within the trap is stable near the bath temperature27. As no loss of activity of a biflagellate C. 

reinhardtii cell has been observed after a 10-minute exposure in the laser trap, this system is 

thought to have a minimal negative impact on the state of health of the cells (Supplementary 

Video 1). Typical acquisition times for well-resolved spectra of pure fatty acids were found to be 

less than one second and for a microalgal cell less than 10 seconds (Online Methods). 

 

Raman spectral library of algal model lipids 

A spectral library was assembled from Raman spectra of several single fatty acids typically 

found in algal lipid extracts (Fig. 2). Several interrelated diagnostic Raman markers, directly 

associated with lipid unsaturation and their phase state deduced from the data in Fig. 2 are used 

to guide the analyses.  First, Raman bands corresponding to (1)  =C-H cis stretch at 1260 cm-1; 

(2) C=C stretch at 1650 cm-1; and (3) =C-H stretch at 3023 cm-1 provide unequivocal evidence 
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for chain unsaturation.  Second, the presence and relative intensities of C-C gauche stretch at 

1075 cm-1 and C-C trans stretches at 1056 cm-1 and 1116 cm-1 can be used to assess the phase 

state of the constituent lipids. This is because fatty acid tails are packed in an orderly trans 

conformation in the solid phase28 whereas gauche conformers populate the more disordered, 

fluid phases. Third, peaks assigned to saturated CH2 bonds, such as CH2 twist at 1300 cm-1, CH2 

bend at 1440 cm-1, and CH2 symmetric and asymmetric stretches at around 2800-3000 cm-1, are 

typically strong in saturated fatty acids. For instance, between arachidonic acid (20:4, Tm = -50 

°C) and stearic acid (18:0, Tm = 70 °C), the unsaturation markers, 1260 cm-1, 1650 cm-1 and 3023 

cm-1 consistently diminish, while the relative intensities of the bands related to the CH2 bond, 

increase. The gauche conformers are gradually suppressed and intensities due to trans 

conformers increase for lipids with higher melting temperature.  These markers provide a semi-

quantitative classification for the presence and concentration of specific lipid types in unknown 

samples.  Semi-quantitative information related to the chain length, unsatuation, and melting 

temperature can be deduced from the Raman spectra. This information is inaccessible in 

fluorescence-based data. 

 

In vivo Raman spectra of microalgal cells  

Single-cell LTRS delivers a high-quality Raman spectrum of a single cell that is held steady in a 

laser trap. Representative LTRS spectra of single cells of several strains, N. oleoabundans cell 

culture in nitrate-depleted media, and lipids extracted from N. oleoabundans are shown in Fig. 3. 

The extracted microalgal lipids show all major lipid Raman bands, which are also represented in 

the microalgae cells. Raman spectra can also identify other important components such as 

proteins, carbohydrates, and pigments (Table 1).  Information about proteins can be obtained 
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from the amide I and III bands (1600-1700 cm-1 and 1200-1350 cm-1, respectively) and from the 

distinctive phenylalanine symmetric stretching (ring breathing) at 1004 cm-1. In addition, 

carotenoid characterized by bands at 1008 cm-1, 1160 cm-1 and 1537 cm-1, and cellulose, seen at 

479 cm-1, 945 cm-1, 1082 cm-1 can help provide insights into queries related to algal biology.  

 

A comparison of these in vivo single-cell Raman spectra of B. braunii and N. oleoabundans with 

the spectra of other types of biomass, such as terrestrial plants29, bacteria30 and human cells24, 

shows the lipid signatures (e.g., 1440 and 1650 cm-1) of the microalgae to be substantially 

stronger than other components, confirming high lipid content in the microalgae cells. To 

determine the ability of Raman spectroscopy to characterize alterations of the lipid profiles 

within single cells following a change of the their environment, the N. oleoabundans cells were 

stimulated by culturing in nitrate-depleted media and observed by single-cell LTRS. The overall 

spectral signatures reveal a significant increase in bands attributed to the lipids under nitrate-

depleted conditions, confirming a net increase in the lipid content. Although this increase in lipid 

content, especially TAGs, can be monitored by fluorescence methods using a cellular suspension 

of the same culture (Supplementary Fig. 2), the single-cell LTRS provides additional 

information regarding the chemical characteristics of these compositional changes.  The spectra 

indicate an obvious increase in the overall lipid content (e.g., enhancement of 1440 cm-1, 1736 

cm-1 and 2820-3030 cm-1 bands), that occurs concurrently with a significant decrease in 

carotenoid and protein content. This is evident from the relative intensities of the carotenoid 

associated bands (e.g., 1008, 1160 and 1537 cm-1) and the protein-associated amide bands (e.g., 

1004 cm-1, amide I and amide III band) (see Table 1 for band assignments). This finding is 
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consistent with the notion that, within single cells, nitrate starvation induces an increase in the 

total lipids present per cell31.  

  

Quantitative analysis of lipid unsaturation  

In addition to the qualitative information determined above from the single-cell Raman spectra, 

quantitation is also possible. Beer’s law indicates that the spontaneous Raman scattering is 

linearly dependent on the analyte concentration32, 33. This relationship indicates that by 

measuring relevant experimentally acquired Raman bands assigned to specific lipid types (or 

proteins), concentrations of the corresponding molecular species can be estimated. In actual 

practice, however, the inherent irreproducibility in condensed phase Raman spectroscopy 

measurements limits the direct applicability of Beer’s law for absolute determination of 

concentrations from single peaks. The use of ratiometric analyses involving a comparison of 

Raman intensities of two independent, but molecularly related, peaks in the same spectrum 

circumvent this limitation. They also provide important diagnostic markers. For instance, the 

ratio of Raman intensity of the C=C stretch and the intensity of CH2 bend, I1650/I1440, displays a 

linear dependence (R2=0.99) with the ratio of the number of C=C bonds and the number of CH2 

bonds for the model lipids (Fig. 4a).  The relationship is also linear (R2=0.99) when the ratio 

I1650/I1440 is plotted simply as a function of the number of C=C bonds per lipid molecule (Fig. 

4b). This approach also eliminates spectral artifacts due to source intensity fluctuations, sample-

to-sample variabilities, and other uncontrolled experimental parameters, thus yielding reliable 

quantitative information. 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
42

8.
1 

: P
os

te
d 

8 
M

ay
 2

01
0



10 

 

This ratiometric method provides a quantitative means with which to estimate the average 

number of C=C bonds when the ratio of I1650/I1440 can be measured. For example, I1650/I1440 

obtained from the lipids extracted from N. oleoabundans in normal growth condition and from 

the triggered individual cells are plotted on the graphs shown in Fig. 4a and 4b (see 

Supplementary Note 1 for fitting parameters). These results suggest that the extracted algal 

lipids have, on average, approximately 1.25 double bonds per lipid molecule and that the double 

bond to CH2 bond ratio is approximately 0.124. For the lipids in triggered cells, there are 

approximately 0.97 double bonds per lipid molecule on average, and the double bond to CH2 

bond ratio is approximately 0.09. Sharing similar formula CH3(CH2)m(CH=CH)nCOO-, the 

average chain length of the fatty acids incorporated in the TAGs equals the number of CH2 bonds 

plus two carbons in each C=C bond and two carbons at the COO- head and -CH3 tail, e.g., , 

1.25/0.124 + 2×1.25 + 2 ≈ 14.6,  for the extracted algal lipids. Therefore, based on the 

ratiometric data summarized above, the average fatty acid chain formula of the lipids extracted 

from the normal N. oleoabundans cell estimates to be 14.6:1.25, which matches the length of the 

fatty acid methyl easter reported using gas chromatography13.  

 

LTRS measurements show that for the individual cells cultured in nitrate-depleted media, the 

average chain length is shortened to n = 14.3, with a decreased degree of unsaturation of 

approximately 0.97 C=C bond per lipid. This difference in the degree of unsaturation associated 

with the lipid makeup of whole cells in nitrate-depleted media is presumably caused by the lipid 

synthetic pathways in response to the stress induced by nitrate-depleted growth condition. This 

finding is consistent with many reports of the lipid profile changes that occur in response to   

growth conditions, such as nutrient limitation14, 34-38. 
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In situ measurements of lipid melting temperature  

Further insight can be gained from the fact that the degree of unsaturation is directly related with 

the melting temperature (Tm) of fatty acids, another critical factor affecting the quality of 

biodiesel. Temperature dependence of chain order parameters typically generate sigmoidal 

curves39, 40, which can be used to predict the Tm of unknown fatty acids using Raman 

spectroscopy. Specifically, Tm of the model fatty acid relates to the unsaturation that is quantified 

by Raman ratio I1650/I1440, and can be fitted with a sigmoidal curve (R2=0.98) (Fig. 4c) (see 

Supplementary Note 1 for fitting parameters). The Raman ratio I1650/I1440 from the lipids 

extracted from N. oleoabundans, and from the lipids in individual nitrate-starved cells are then 

plotted on the same calibration curve, predicting a transition temperature of approximately -

0.3 °C for the extracted lipids and 2.6 °C for the lipids measured in whole cells.  When the Tm of 

the extracted lipids was measured by differential scanning calorimetry (DSC), a difference of 

less than 1 °C separated the predicted and measured values (Fig. 4d). As DSC usually requires 

milligrams of sample for each measurement, obtaining this level of accuracy from single cells 

represents a significant advance in characterizing the lipids within microalgae. These results 

demonstrate unprecedented real-time in situ quantitative oil profiling and melting temperature 

prediction within a live cell during growth and oil production.  

 

DISCUSSION 

The enormous biodiversity (200,000-800,000 species) of microalgae poses huge challenges in 

the identification and screening of potential candidates for effective biofuel production41, 42.  The 

utilization of genetic manipulation and physiological engineering to improve biofuel production 
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only increases the sample diversity. This study of only five algal species in response to changes 

of light exposure, nitrogen, silicon, CO2, pH, and temperature required culturing a minimum of 

30 samples.  This number rapidly increases when full factorial statistically designed experiments 

are required to understand the important biotic and abiotic factors affecting growth and lipid 

production. Central to overcoming these challenges is the development of a rapid, facile, and 

reliable analytical method to characterize the composition and concentration of energy-rich 

neutral lipids. The work reported here illustrates the promise of single-cell Raman spectroscopy 

for a rapid, accurate, and quantitative characterization of lipid profiles from single microalgae 

cells in a non-destructive and label-free manner. The technique is amenable to high-throughput 

screening and/or a sorting-based assay when coupled with microfluidics, or it can be 

implemented as a pond- or bioreactor-based in situ screening assay for the routine assessment of 

algal health and productivity. Microalgae have also been utilized as a resource for obtaining 

other compounds, such as dietary fatty acids and proteins, as well as ingredients of cosmetics and 

pharmaceuticals43, such as antioxidant carotenoids, which also have distinct Raman signatures. 

Single-cell Raman spectroscopy would also be useful for in situ and direct monitoring of these 

components. Thorough quantitative analysis enabled by chemometrics techniques44 could extract 

more information from lipids and other important components produced in microalgae.  

 
  The use of single-cell LTRS affords a simple, quick and highly effective method to interrogate 

individual microalgal cells with the high specificity of information, and promises to enable rapid 

progress on the road to sustainable, as well as economically and environmentally responsible, 

energy supplies. This demonstration of facile label-free quantitative in-vivo analysis of 

microalgae is suitable to understanding lipid profiles of any organism or metabolic system where 

knowledge of fast dynamics of metabolites, pathways and lipid compositions are desired. Lipid 
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metabolism disorders and their link to numerous diseases have led to a dramatic increase in 

research and system-level studies of extremely intricate cellular interactions and lipid profiles. 

Mass spectrometry and chromatography based techniques on cell extracts have filled significant 

gaps in our current understanding in terms of lipid metabolism disorders. To date, there are a 

handful of experimental approaches using living cells utilizing fluorescent lipids that have also 

shown promise, but are limited in its ability due to non-specificity providing mostly qualitative 

signatures 45. This in vivo capability expands the list of available analytical tools to researchers in 

the emerging field of lipidomics for multiple applications9, 46.  
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FIGURES AND CAPTIONS 

 

 

Figure 1 Single-cell laser-trapping Raman spectrosocpy (LTRS) setup.  (a) Individual microalgal 

cells immobilized by the optical trap, imaged by bright-field microscopy: (1) N. oleoabundans; 

(2) B. braunii; and (3) C. reinhardtii. (a) Instrument layout showing the 785 nm laser beam used 

as both trap beam and Raman excitation beam, excitation path, Raman scattering path, positions 

of objective lens, pin-hole, grating and CCD.   

 

a b 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
42

8.
1 

: P
os

te
d 

8 
M

ay
 2

01
0



15 

 

Arachidonic acid (20:4, -50 C)

Linolenic acid (18:3, -11 C)

Linoleic acid (18:2, -4.5 C)

Palmitoleic acid (16:1, 1.5 C)

500                    1000                    1500                   2000                  2500                    3000
Raman Shift (cm-1)

Oleic acid (18:1, 13 C)

Octanoic acid (8:0, 16 C)

Decanoic acid (10:0, 31 C)

Dodecanoic acid (12:0, 41 C)

Myristic acid (14:0, 59 C)

Palmitic acid (16:0, 63 C)

Stearic acid (18:0, 70 C)

 

Figure 2 Raman spectra library of 11 fatty acids, listed in descending order of their respective 

melting temperatures (Tm).  
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Figure 3 

 

Figure 3 In vivo single-cell LTRS spectra of several species of microalgae, from top to bottom: 

C. reinhardtii, B. braunii  (UTEX# 2441), B. braunii  (UTEX# 572), N. oleoabundans and N. 

oleoabundans grown in nitrate-depleted media (N-), and the spectrum of algal lipids extracted 

from normal  N. oleoabundans by chloroform/methanol method.. 
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Figure 4 

 

 

Figure 4 Quantitative analysis of degree of unsaturation, chain length and melting temperature 

of fatty acids by Raman spectroscopy, and validation by DSC method. (a) The ratio of the 

intensity of the 1650 cm-1 band (C=C stretch) to the 1440 cm-1 band (CH2 twist), I1650/I1440 of 

fatty acids standard are plotted versus the ratio of the number of C=C bonds to CH2 bonds, and 

fitted linearly (R2 =0.99), then I1650/I1440 measured on the lipids extracted from normal N. 

oleoabundans cells and the lipids in the individual N. oleoabundans cells grown in nitrate-

depleted media is fitted on the curve to predict their molecular structure. (b) I1650/I1440 are plotted 

verses the number of C=C bonds per molecule and fitted linearly (R2 = 0.99), to predict degree of 

a b 

c d 
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unsaturation of the lipids extract from normal N. oleoabundans cells and the lipids in the 

individual N. oleoabundans cells grown in nitrate-depleted media. (c) I1650/I1440 of fatty acid 

standards are plotted versus their published melting temperatures and fitted with a sigmoidal 

Boltzmann function (R2 = 0.98), to predict the melting temperatures of the lipids extracted from 

normal N. oleoabundans cells and the lipids in the individual N. oleoabundans cells grown in 

nitrate-depleted media. (d) DSC measurement of the melting temperature of the lipids extracted 

from normal N. oleoabundans cells confirms the prediction based on LTRS Raman spectra. 
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TABLES 
 
 
Wavenumber (cm-1) Components Assignments  
479 Carbohydrate C-C-C deform.  
744 Carbohydrate, chla,  H–C–O str. and chla N-C-C deform.  
854 Carbohydrate Hemiacetal str. and methylene deform. 
865 Phospholipid C4N+ and O-C-C-N sym. str. 
945 Carbohydrate, protein α-helix C−C bk. str., C−O−C str. 
1004-1008 Protein, carotenoid Phenylalanine ring breath, carotene C-H 

bending 
1056, 1116 Lipid Alkyl C-C trans and gauche str.  
1075 Lipid Alkyl C-C gauche str. 
1082 Carbohydrate Carbohydrate C-O-H bending 
1120 Carbohydrate C-O-H deform., C-O and C-C str. 
1160 Carotenoid Carotene C-H str. 
1200-1350 Protein Amide III 
1260 Lipid Alkyl =C-H cis str. 
1300 Lipid Alkyl C-H2 twist  
1340 Carbohydrate, chla Carbohydrate C-H2 deform. and 

C-O-H bending, Chla C-N str. 
1440 Lipid Alkyl  C-H2 bend  
1537 Carotenoid Carotene C=C str. 
1600-1700 Protein Amide I 
1650 Lipid Alkyl C=C str. 
1736 Lipid Ester C=O str. 
2850-2930 Lipid, carbohydrate C-H2, C-H3 asym.  and sym. str. 
3023 Lipid Alkyl  =C-H str. 
 

Table 1 Assignments for Raman bands (medium to strong bands only), collected from the 
following references: carotenoid47, chlorophyll a (chla)48, lipids23, protein49, and carbohydrate 
(including cellulose)29, 50. Deform. = deformation, str. = stretches, bk. = backbone, sym. = 
symmetric, asym. = asymmetric. 
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ONLINE METHODS  
 
Algal strain, culture condition and lipid triggering  

Botryococcus braunii (UTEX #572 and #2441) with its growth medium, Bold 3N, and 

Neochloris oleoabundans (UTEX #1185) with its growth medium, Soil Extract, were obtained 

from the Culture Collection of Algae, at the University of Texas at Austin. Chlamydomonas 

reinhardtii (CC-503 cw92 mt+) and Sueoka’s growth medium were obtained from the 

Chlamydomonas Center at Duke University. Algal cultures of 120 mL volume were grown in 

sterile 250 mL glass culture flasks covered loosely with sterile foil. Culture flasks were placed in 

a diurnal incubator at a temperature of 20.8 oC with a daily 24-hour cycle of 16 hours fluorescent 

light followed by 8 hours of dark. 

 

Nitrate-depleted growth of N. oleoabundans cultures were obtained by initially growing cultures 

in Soil Extract medium.  At day 19 of growth, the regular medium was changed to the triggering 

medium, which was made by following the soil extract recipe from UTEX, but eliminating the 

NaNO3 component entirely. The other components included CaCl2·2H2O, MgSO4 (anhydrous), 

K2HPO4, KH2PO4, NaCl and Soil-Water Medium purchased from WARD’S Natural Science 

(Rochester, NY). 

 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless otherwise stated. 

Organic solvents are all HPLC grade.  

 

Lipid extraction 
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Chloroform methanol extraction of N. oleoabundans is based on the method described by Bligh 

and Dyer (Bligh_1959) with slight modifications. A mixture of chloroform and methanol (2:1 

v/v) was used as an extraction solvent. Glassware was used for all the steps to minimize polymer 

contamination. One liter of N. oleoabundans culture at confluence was used. Confluence was 

reached after 16 days of growth following triggering. The cells were centrifuged at 4000 RPM 

for 10 minutes. The cell pellets were then collected and resuspended in 1 mL DI water in a glass 

vial. The vial was sonicated for 10 min in a 50 °C water bath. 3 mL of extraction solvent was 

added into the vial.  The extraction step was processed by placing the vial in a 50 °C water bath 

for 1 hour while vortexing vigorously for 1 minute every 10 minutes, and allowing the 

suspension to settle for 30 sec on ice in between each vortex. Afterwards the sample was placed 

at -20 oC for 1 hour to accelerate separation. After separation, the bottom oil/chloroform phase 

was transferred with a needle, and stored at -20 oC for future use. To evaluate lipids by Raman 

measurements, the chloroform was evaporated under a stream of nitrogen and the sample was 

placed under vacuum for 2 h to remove residual chloroform. The lipid film was finally 

resuspended in DI water at a concentration of 5 mg/mL. 

 

Single-cell Laser-trapping Raman Spectroscopy 

Briefly, a 785 nm laser with 70 mW output power from a continuous wave DPSS laser 

(CrystaLaser, Reno, NV) was directed through a 4X beam expander, and a 785 nm bandpass 

filter (Omega Filters, Brattleboro, VT) to remove any possible plasma emission generated within 

the laser tube. The beam was then delivered into an inverted Olympus optical microscope 

(IX71), which is equipped with a dichroic longpass beamsplitter (Chroma Technology, 

Rockingham, VT) to reflect the laser beam into a 1.2 N.A. 60X water immersion objective lens, 
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resulting in a diffraction limited spot of 0.5 μm diameter at the laser focus. The beam was 

focused through a quartz coverslip, with a power of approximately 10 mW out of the objective. 

Raman scattering generated at the focus were collected by the same objective, passed through the 

dichroic beamsplitter and a long-pass edge filter (Omega Filters, Brattleboro, VT) to block 

elastic scattering photons, and then focused through a 100 μm pinhole for background signal 

rejection. The signal is dispersed by a spectrometer (Acton #2300i, Princeton Instruments, 

Trenton, NJ) equipped with 1 μm blaze wavelength 300 g/cm grating and projected on an air-

cooled EM-CCD with 1340 × 100 pixels (PIXIS, Roper Scientific, Tucson, AZ). Spectral 

resolution was higher than 5 cm-1. 

 

For measurements of fatty acid standards, a small amount of sample (5 μL for liquid samples or 

a couple of grains for solid samples) were put on the cleaned quartz coverslip. The focal point of 

the laser was moved onto the sample. Measurements were done at room temperature. The 

acquisition time was 1 second for fatty acid standards.  

 

For particles suspended in aqueous buffer, the laser focused by the high N.A. objective lens 

forms an optical trap that can immobilize a single micron-sized particle. The focused laser can 

trap the particle and lift it several microns above the surface, which reduces surface perturbation.  

In addition, noise from regions other than the focal point is rejected by the confocal pinhole.  For 

both these reasons, the LTRS has an extremely high signal-to-noise ratio. 

 

For measurements of single cells, cell suspension was diluted, such that only a few cells would 

occupy the microscopic field of view. Sample (40 μL) was placed on the cleaned quartz 
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coverslip. Measurements were started 2 min after a cell was trapped, enabling the prerequisite 

photobleaching of the chlorophyll fluorescence, and acquisitions were made for 10 s. Raman 

spectra were acquired and processed by WinSpec32 software (Roper Scientific, Tucson, AZ). 

After background subtraction, the spectra are smoothed by employing an averaging filter. The 

intensity of each peak was calculated by subtraction of the average baseline value of that peak 

from the maximum intensity value. Baselines for each peak were simplified as a line connecting 

the two lowest points at the left and right sides of the peak. Data fitting was done by Origin 

software (Microcal Software, Inc., MA) 

 

DSC Measurements 

Free fatty acid standards, linoleic acid and palmitoleic acid, were tested as received without 

further purification.  A small volume (30 μL) of each was sealed into separate DSC crucibles.  

For the algal extracts, approximately 1.5 mg of oil was evaporated from chloroform under a 

stream of N2 directly into the DSC crucible.  Residual chloroform was removed under vacuum 

for at least 24 h before sealing the crucible.  Phase transitions were measured by differential 

scanning calorimeter using a Mettler Toledo DSC822e.  Samples were scanned from -20 or -30 

oC to 20 oC, initially at 10 oC/min, and on subsequent scans at 1 oC/min. The values reported 

were taken at 1 °C/min. Lipid phase transitions were taken as the maxima of endothermic peaks 

on thermal upscans.   
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