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Abstract

This talk is an attempt to define a new field called "Nano-
enabled Biological Tissues". As such, this talk serves as a
review of both the theoretical underpinnings and relevant
recent results.

The presentation is divided into several parts:

* in the first section (slides 3-4), the concept of nano-enabled
tissues are introduced as a complex system that can be
engineered at multiple scales.

* the second section (slides 5-12) contains three essential
ingredients to achieve the technological vision. Current
examples of each ingredient are introduced separately.

* in the third section (slides 13-17), additional essential
ingredients are considered. This includes strategies for
system construction (top-down vs. bottom-up), and
additional tools for functionality such as computational
intelligence.



Nanoscale Technology Enables
Complexity at Larger Scales.......
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Role of Scale (Size AND Organization)

Single molecule monitoring Cell colonies and
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Ingredient I, Biomimetics/
Biocompatibility

Nature has evolved things better
than humans can design them.

* can use biological materials (silks)
or structures (synapses).

* compliant materials used to
replace skin, connective tissues.

* non-toxic polymers used to

prevent inflammatory response S
s Polylactic Acid Cyclomarin Hydroxyapatite Parylene
1n lmplants' Coating Source (Collagen) (Smart Skin)



Artificial Skin, Two Approaches

Approximating cellular function:

Skin
Mesenchymal Stem Cells Improves Burn
Wounds". Artificial Organs, 2008.
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Stem cells better than synthetic polymers (latter
does not allow for vascularization).

* stem cells need cues to differentiate.
* ECM matrix, "niche" important.

* biomechanical structure hard to approximate.

Approximating electrophysiology:
"Nanowire active-matrix circuitry for low-

voltage macroscale artificial skin". Nature
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Skin has important biomechanical, sensory

functions (pain, touch, etc).

* approximated using electronics (nanoscale
sensors embedded in a complex geometry).

* applied force, should

electrophysiological-like signal.

generate




Artificial SKkin Response
Characteristics

1.0 - — ) ARl il .
Sl Applicd pressan: 15
-
s = B
=
T
0.4
o2 -
ol i
]
1 =)
N 20
1 vy — Output signal a
Applicd pressure
1.0 ; Jas
0& : T : 3
= F . ' .
e . i 3 . J o
o 0% 3 F i ]
A [ ] ‘ -
3 \ ‘ s
0.2 / \ ! -
- \ AN
) 0.5 1.0 1.5
Tirem= C=2
20
1.2 R Output =ignal
- - = mpplicd pressure
1.0 —H15
0OR T
e da
2 oe =
LT -
). A -
=
0 . o
[t S
1.2 F S — Yl gl siger sl 4=
Ay ypslises | grrsessasres
(N N s
. y= H u
& H
s - 10
O i
a4 -
L L
oz | ' E
! ]

iEeparssia iy (o assaud ey

‘B simEAc )iy

g NG 9 Coy

Results for stimulation of electronic skin:

Output signal from electronic skin, representation
is close to pressure stimulus.

* only produces one class of sensory information
(pressure, mechanical).

Q: does artificial skin replicate neural coding?

* patterned responses over time (rate-coding) may
be possible.

* need local spatial information (specific to an
area a few sensors wide).

* need for intelligent systems control theory at
micro-, nano-scale.




Silk as Substrate, Two Approaches

M. Buehler,
Nature Materials,
9, 359 (2010)

Bio-integrated Electronics. J. Rogers,
Nature Materials, 9, 511 (2010)

Nanoconfinement (Buehler group,
MIT):

* confine material to a layer ~ 1nm thick
(e.g. silk, water).

* confinement can change material,
electromechanical properties.

Bio-integrated electronics (Rogers
group, UIUC):

Silk used as durable, biocompatible
substrate for implants, decays in vivo.

* spider web ~ steel (Young's modulus).

* in neural implants, bare Si on tissue
causes inflammation, tissue damage,
electrical interference.

* a silk outer layer can act as an insulator
(electrical and biological).




Ingredient II, Flexible Electronics

Q: how do we incorporate the need for compliance in a device that requires electrical

functionality?

* tissues need to bend, absorb externally-applied loads, conform to complex geometries, dissipate energy.

A: Flexible electronics (flexible polymer as a substrate).

Flexible e-reader

Nano version (Nano Letters, 3(10),
1353-1355 - 2003):

* transistors fabricated from sparse
networks of nanotubes, randomly
oriented.

* transfer from Si substrate to
flexible polymeric substrate.
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E-skin for Applications

Organic field effect transistors (OFETs):

* use polymers with semiconducting properties.

Embedded array PNAS, 102(35), 12321

\ 12325 (2005).

* 1n flexible electronics, substrate is a compliant material (skeleton for n
Jed

electronic array).

of pressure and

thermal sensors

Thin-film Transistors (TFTs):

* semiconducting, dielectric layers and contacts on non-Si substrate
(e.g. LCD technology).
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Ingredient 111, Nanopatterning

Q: how do we get cells in culture to form complex geometries?

We can use nanopatterning as a substrate for cell
monolayer formation.

* cells use focal adhesions, lamellapodia to move across
surfaces.

* migration, mechanical forces an important factor in self-
organization, self-maintenance.

myocadium

nanopalismed cover glass
{21 mm diameter)

Gratings at
nanoscale
dimensions

groove: 50 nm
height: 200 nm

PNAS 107(2),
565 (2010)

Alignment and
protrusions w.r.t
nanoscale substrate

Fig 3. Cell 2and cytoskaleton aligament and snstions. (A) Im~unotl o res-
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MWCOCNTs as Substrate for Neurons

Multi-Wall CNT substrate for HC neurons: Nano Letters, 5(6), 1107-1110 (2005).
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Bottom-up vs. Top-down Approaches

Theoretically, there are two basic approaches

“Bottom-up™ Approach “Top-down™ Approach
F i 4 W to bulldlng tissues:
Cal Miero ~ Cell  Call Cells Polymer Scaffol¢ -
agyregalion fatrication sheets printing
@
@@
@®
/ { ‘H ))
Modular Tlssue CalPlaton | Seatd 1 1) bottom-up:  molecular self.—ass.ernbly
ECM Daposiion ™ Degradation (lipids, proteins), from individual

components  into structures (networks

micelles).

Nature Reviews
Microbiology 5,
209-218 (2007).

Engineered Tissue 2) top-down: allow cells to aggregate upon a
patterned substrate (CNTs, oriented ridges,

Soft Matter, 5, 13121319 (2009). i ]
microfabricated scaffolds).



Top-down approach: Electrospinning

Align nanofibers using electrostatic repulsion forces N _,5
(review, see Biomedical Materials, 3, 034002 - 2008). | IR
Elecirospinning N (_9_7,_

anvelope —— e ————

Contact guidance theory:
Cells tend to migrate along orientations associated with
chemical, structural, mechanical properties of substrate.

Left: "Nanotechnology and Tissue
Engineering: the scaffold". Chapter 9.

Right: Applied Physics Letters,
82,973 (2003).

Electrospinning procedure:
* fiber deposited on floatable table, remains charged.

* new fiber deposited nearby, repelled by still-charged,
previously deposited fibers.

* wheel stretches/aligns fibers along deposition surface.

* alignment of fibers ~ guidance, orientation of cells in tissue
scaffold.
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Bottom-up approach: Molecular
Selt-assembly

Protein and peptide approaches commonly

used.

Protein approach see review, Progress in

Materials Science, 53, 11011241 (2008).
P
} ;g o Hierarchical Network Topology, -
o N .. _; network MD simulations. PLoS ONE, .
| % 4(6), €6015 (2009).
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-helix protein networks in

cytoskeleton withstand strains
of 100-1000%.

* synthetic materials
catastrophically fail at much
lower values.
* due to nanomechanical
properties, large dissipative
yield regions in proteins.
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Additional Tools: Memristor

Memristor: information-processing device (memory + resistor, Si-based) at

nanoscale.

* conductance incrementally modified by controlling change, demonstrates short-
term potentiation (biological synapse-like).
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Biopaper  Bioink Bioprinter

Additional Tools: Bioprinting

Bioprinting: inkjet printers can deposit layers on a substrate in patterned fashion.

* 3D printers (rapid prototypers) can produce a complex geometry (see Ferrari,
M., "BioMEMS and Biomedical Nanotechnology" 2006).

Cell Fucke W aggregate cul

= - ‘ﬂ' Optical Atomic

a Microscopy h Microscopy um
120

Sub-femtoliter (nano) inkjet printing:
* microfabrication without a mask.

T
I

* p- and n-channel TFTs with contacts (Ag ﬁ- ‘:“n LTF 40 .
. . =m LM UM — Em
nanoparticles) printed on a substrate. PNAS, 105(13), 4976 (2008).

G d
* amorphous Si thin-film transistors (TFTs), x i i il |
conventionally hard to control features smaller | % S | 31 g : | |
than 100nm. 3 fi 5 { Al 1
| e '
| il el



Conclusions

Nano can play a fundamental role in the formation of artificial tissues,
especially when considering:

* emergent processes: in development, all tissues and organs emerge from a
globe of stem cells.

* merging the sensory (electrical) and biomechanical (material properties)
aspects of a tissue.

Advances in nanotechnology might also made within this problem domain.

* scaffold design requires detailed, small-scale substrates (for mechanical
support, nutrient delivery).

* hybrid protein-carbon structures, or more exotic "biological" solutions
(reaction-diffusion models, natural computing, Artificial Life)?
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