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What controls C stability?

Ocean: 1000 Pg

Terrestrial: 2000+ Pg
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Extracellular enzymes

Degrade complex molecules from plants,
animals, and other microbes

n consequence: prevent the world
from filling with dead bodies
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Enzyme-based warming model

sensu Schimel and Weintraub, 2003
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Collaborators:
Mark Bradford

Matt Wallenstein Allison et al. 2010, Nature Geosci



How do we model enzyme response to
warming?

Michaelis-Menten relationship

Exponential increase in Vmax (Davidson & Janssens 2006)

Km response unknown in soil

Models can drive experiments!
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Soil sampling

Enzyme assays:

Maddie Stone

Kathleen Marcelo
Stephany Chacon
Donovan German

Temperature response:
Assay activity at 4°C to 40°C



What if microbes adapt to warming?

e Return toward initial state due to physiology,
evolution, community shifts
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1) Vmax might increase less than expected with
warming -> reduces enzyme act|V|ty

2) Km might change less than expected
(declines in Km INCREASE activity)



Latitudinal gradient

Hardwood forest: Maine, West VA Costa Rica
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In[Vmax (nmol/g/h)]

Vmax temp. response within sites:
Beta-glucosidase
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Vmax Temp Sensitivity
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In[Km (micromol/L)]
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Km Temp Sensitivity
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Integrate theory and data into model
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Integrate theory and data into model

Km adaptation: lose SOC

Vmax adaptation: gain SOC
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Summary: Temperature responses

* Vmax increases with temperature

* No Vmax adaption: no advantage to reducing

L1 ¢

enzymatic potential in warm soils

ninding wea

* Km may ada

 Km also increases with temperature; substrate

kens due to instability

ot because lower Km in warmer

soil enhances enzyme activity
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Approach for model-data integration

For a process of interest, determine relevant traits
and environmental drivers

Constrain trait distributions with empirical data

Sample trait distributions or assign functional groups
in model

Let the environment select on community and
process

Thank you: Lab members, NSF, audience



Constant CUE = large SOC losses
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Constant CUE = large SOC losses
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Varying CUE increases C storage
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Acclimation of CUE restores losses
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Acclimation of CUE restores losses
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Temperature constraints

* Can we explain ephemeral CO, response to
warming (e.g. Melillo et al. 2002)
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Hypotheses

* Substrate depletion: CO, respiration returns to
control levels because SOC pools are depleted

 Thermal adaptation (or acclimation): microbial
physiological parameters change in a way that
reduces CO, respiration



A lesson from dynamic vegetation models

DGVMs incorporate plant functional types

Mechanistic representation of ecosystem processes like
photosynthesis

Aggregation based on leaf traits, growth form, and phenology




Taxonomic aggregation

Process Response
Physiological Trait to Disturbance

(e.g. N-fixation,
CO, respiration)
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Trait-based aggregation also possible
(e.g. Moorhead and Sinsabaugh 2006)
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Steven D. Allison, University of California, Irvine

Background/Question/Methods

Molecular and bioinformatics techniques are revealing the rich diversity of microbial
communities. These approaches generate valuable data that ecologists could use to
develop and test theories that apply to a large fraction of living organisms. However, the
complexity of microbial community data is a challenge to achieving this integration. A
fundamental question in microbial ecology is how to aggregate microbial communities
so that their taxa may be represented in theoretical models. Recently, models based on
microbial traits have been developed to tackle this question. Such models may
represent microbial taxa as functional groups or stochastic assemblages with a
distribution of trait values. Here, | define these two model types and show how they can
be used to make predictions about the function of complex microbial communities. |
focus on organic matter decomposition and nutrient mineralization because this function
is typically driven by complex microbial communities.

Results/Conclusions

When applying ecological theory to predict rates of organic matter turnover, complex
communities can be aggregated based on relevant traits, such as the ability to produce
extracellular enzymes. Ecological and evolutionary theories provide a framework for
predicting the distribution of these traits across time and space. For example, theories
on ecological succession may predict the temporal progression of enzyme traits that
occur in association with a decomposing substrate. Dispersal parameters from island
biogeography theory may determine the movement of enzyme traits across the
microbial landscape. Evolutionary theory can be used to predict the appearance and
loss of enzyme traits due to selective pressures in microbial ecosystems. All of these
theories then determine the abundance of particular functional groups, or the means
and variances of trait distributions that directly affect ecological function. Functional
group models may be useful in simple systems, but stochastic models based on
distributions may be more relevant for complex communities with a diversity of
continuous traits and many unidentified members.



