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ABSTRACT 
REM sleep enhances hippocampus-dependent associative memory but has little 

impact on striatal-dependent procedural learning1-3. Antidepressant medications like 

desipramine (DMI) inhibit rapid-eye-movement (REM) sleep but it is little 

understood how antidepressant treatments affect learning. We found that DMI 

strongly suppressed REM sleep in rats for several hours and impaired reconsolidation 

of a familiar maze and consolidation of moved baited positions (reversal learning) in a 

sleep-dependent fashion. Unexpectedly, DMI also reduced the spindle-rich transition-

to-REM sleep state (TR) and spatial memory changes were more related to TR than to 

REM sleep. Working memory was unaffected, but overnight reference memory was 

significantly impaired and subjects increased reliance on non-hippocampal strategies. 

Procedural memory performance was positively correlated with increases in non-

REM sleep after DMI serving to offset memory declines, partially preserving 

performance. Our results suggest that familiar memories are reconsolidated during 

REM sleep, reversal memories consolidated during TR, and procedural memories 

consolidated during non-REM sleep. 
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We tested the involvement of REM sleep in the process by which memories 

are rendered stable (consolidation) by looking at REM sleep suppression using a 

commonly prescribed selective norepinephrine reuptake inhibitor and REM sleep 

suppressing antidepressant, desipramine. Studies have shown that short term REM 

sleep deprivation following new learning impairs hippocampus dependent spatial 

learning and memory, depending on the task and intensity of training1-3. Striatal 

dependent procedural learning is largely unaffected by REM sleep deprivation1-5. 

Arguments against the role of REM sleep in memory consolidation include the 

observation that instrumental REM sleep deprivation can be stressful6,7 thereby 

confounding the effects of sleep manipulation with the negative effects of stress on 

memory8,9. Additionally, individuals using REM sleep suppressing antidepressants do 

not report marked reductions in memory function beyond those already associated 

with depression, although some have been documented10. We chose to address both 

issues using DMI as a non-instrumental REM sleep deprivation technique that is 

commonly employed in humans patients to treat depressive symptoms with a 

relatively low side effect profile11. 

DMI inhibits of the reuptake of noradrenaline (NA) thus elevating NA levels 

at all targets of the locus ceoruleus. Elevated levels of NA actively suppress REM sleep 

by acting in the pons to inactivate REM-ON cholinergic neurons12. Here we report for 

the first time that REM suppression impairs reconsolidation of a familiar recalled 

memory, and provide evidence that the often overlooked TR state is involved in the 

process of reversal learning2 (learning a new response in a familiar context). Both 

tasks are dependent on normal hippocampal activity13,14. Finally, we contrasted 

hippocampal learning effects of DMI-induced sleep changes with striatal learning 

effects using a procedural fixed choice T-maze task.  

  

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
52

4.
1 

: P
os

te
d 

13
 O

ct
 2

01
1



Watts et al. DMI suppresses REM sleep and impairs learning P a g e  | 4 

RESULTS 
DMI inhibits REM and TR sleep 

DMI taken orally reduces REM sleep for 5-8 hours in patients being treated for 

depression15. A 10 mg/kg DMI dose p.o. ingested by our subjects suppressed REM 

sleep for 8 hours (Figure 1a, p = 0.0006 repeated measures MANOVA) with no 

discernable impacts on health or ambulatory activity. Continuous recordings in 8 

subjects showed that time spent in REM sleep went from an average of 8.35 ± 1.24 % 

during the light phase (measured on the second day of baseline conditions) to 3.51 ± 

1.22 % after administration of DMI (p = 0.00038, repeated measures ANOVA, baseline 

vs. DMI treatment day effect, Figure 1a). Within the first 6 hours post-training, i.e., 

the REM sleep critical window ascertained for this training regimen1, REM sleep was 

reduced 95.6 +/- 0.22% (p = 3.84x10-8, Figure 1e) with no diminution across testing 

days (Figure 1f, p = 0.95, paired t-test on 1st vs. last day and Figure 1d). DMI 

administration also produced a significant (p = 0.03, paired 2-tailed t-test) decrease in 

the number of REM episodes relative to the same circadian time under baseline sleep 

conditions. 

Insert Figure 1 here 

 

DMI treatment does not impair activity or motivation 
Twenty-four rats were tested under conditions of 10 mg/kg DMI or Control mash 

(Supplemental Figure 1) after performing a familiar and reversal (novel) 8-box mazes 

for 30 min each and 15 trials of a fixed choice T-maze task each day for 5 days. Both 

DMI and Control groups ran a similar number of laps on the 8-box mazes each test 

day and between days (Novel maze, Control 14.8 vs. DMI 14.2 laps, Wilcoxon Sign-

Rank test p = 0.9387, 1st day 14.8 vs. last day 14.3 laps, p = 0.365; Familiar maze, 

Control 18.8 vs. DMI 18 laps, p = 0.330, 1st day 18.3 vs. last day 18.5 laps, p = 0.461). 

Controls and DMI treated rats also did not significantly differ in weight (day 5: 
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Control = 336 +/- 14.8 mean grams +/- SEM; DMI = 326.8 +/- 9.23; p = 0.389, t-test) 

indicating that maze sampling experience and hunger related learning motivation did 

not differ between groups.  

 

DMI impairs novel spatial learning and familiar reconsolidation  

Under DMI treatment, subjects showed significant performance deficits on novel 

reversal learning and familiar maze reconsolidation. A general linear model with 

repeated measures showed a performance effect of drug treatment: DMI performance 

was worse than controls (p = 0.001). Performance was better on the familiar vs. novel 

maze (p = 0.000), and DMI had the same negative effect on performance on both 

mazes as there was no drug by maze interaction (p = 0.759). Within subjects there was 

a powerful learning effect of training day (p = 0.000) that was dependent on whether 

the maze was novel (improved daily performance) or familiar (less marked daily 

improvement), as shown in a day by maze interaction (p = 0.000), and this day effect 

persisted independent of DMI administration (day by drug interaction p = 0.143) 

regardless of the maze run (day by drug by maze interaction p = 0.705).  

Insert Figure 2 here 

 

Reversal learning impaired by DMI treatment TR loss 

For novel spatial learning on the reversal task (Figure 2a), the DMI group never 

reached criterion, always performing >1 mean error/lap even after 5 days (Figure 2a 

and Figure 4c). Interestingly, performance deficits under DMI treatment were not 

correlated with the level of REM sleep suppression on this reversal learning task 

(Supplemental Figure 2c) but instead were highly correlated with drops in TR under 

DMI treatment (Figure 2c and Table 1). Consistent with DMI’s impact on REM sleep, 

DMI also attenuated the amount of TR sleep (Figure 2d) by a range of 13-75% in the 

first 12 h after treatment. TR and REM sleep can be independently regulated 
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(Supplemental Figure 5d,e); TR often occurs without a subsequent REM period and 

REM sleep can occur with an abbreviated TR state.  

Within a single running session, both Control and DMI treatment conditions 

showed significant improvement of, on average, ~1 error/lap (Control 0.92 +/- 0.36, 

DMI 0.71 +/- 0.30, MANOVA, no group effect p = 0.6423, no day effect p = 0.2031, 

and no day by group interaction p = 0.996; supplemental Figure 3c and d). Thus, 

working and short term memory systems do not appear to be influenced by the prior 

day’s DMI treatment.  

The source of the learning deficit for DMI treated animals on the novel maze 

was poor retention across the night. Subjects given DMI committed 0.5 +/- 0.20 more 

errors on the first 3 laps than on the last 3 laps of the previous day. Controls, 

however, made 0.32 +/- 0.20 fewer errors than the last laps of the day prior 

(MANOVA drug effect p = 0.0217). There was no significant day effect (p = 0.0825) or 

day by drug interaction (p = 0.1809) in this retention measure, meaning that DMI 

affected reference memory retention on all days.  

The DMI treatment condition also increased the utilization of non-

hippocampal or procedural strategies to locate the positions of new food boxes, as 

revealed by a significant increase in errors after a 180� maze rotation between laps 10 

and 11. For this rotation, baited boxes remained in the same allocentric positions but 

the boxes that held the food was changed, pitting non-hippocampus dependent local 

cue use against hippocampus-dependent allocentric spatial map strategies (Figure 2b; 

see methods for details). Reversal learning was thus attenuated by DMI treatment in a 

sleep-dependent fashion, with the most relevant sleep metric being the length of time 

spent in the transition to REM sleep state during DMI after training each day. 

 

Reconsolidation impaired by DMI treatment 
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Performance significantly worsened on the familiar maze when 10 mg/kg 

desipramine was administered after each training session (DMI negative slope curve 

fit 1st order polynomial R2 = 0.75). By contrast, control performance held steady (Figure 

3a, repeated measures ANOVA DMI vs. Control, p = 0.005). There was no 

performance difference between groups on the first day of the familiar maze (p = 0.34, 

t-test), but by day 5 the performance difference between groups was a full error per 

lap (p = 0.001, t-test). The relative preservation of performance was greatest for those 

DMI treated subjects that showed the least attenuation of REM sleep (Figure 3c). 

However, the strongest correlation between sleep measures and familiar maze 

performance was the percent time spent in TR during testing. Unlike the novel maze 

performance, this correlation was negative. That is, those subjects with the best 

performance had the least % TR during DMI treatment and those whose performance 

worsened most over the 5 days were those with the most %TR during DMI (Table 1 

and Figure 3d). Thus, the more TR was preserved during treatment the better the 

consolidation of novel learning (Figure 2c), and the worse reconsolidation of familiar 

memory. 

Insert Figure 3 here 

As on the novel maze task, DMI treated subjects performing on the familiar 

maze were unable to effectively utilize reference memory to maintain performance 

overnight as evident by an increase in the number of errors on the first few laps from 

day 1 to day 5 (Figure 4a vs. 4c and Supplemental Figure 3a vs. 3b). Animals treated 

with DMI had more trouble retrieving correct reward box locations between days on 

the familiar maze than when not being treated with DMI (ANOVA p = 0.0001). DMI 

performance worsened by 1.19 +/- 0.29 errors in the first lap compared with the last 

lap of the prior day. Control performance improved by 0.16 +/- 0.14 errors overnight. 

Thus reference memory errors contributed to the degraded reconsolidation during 

DMI treatment.  
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Insert Figure 4 here 

DMI treatment also resulted in more errors after the maze rotation in the 

familiar maze condition (p = 0.0059, Figure 3b) revealing increased use of non-

hippocampal strategies. Animals also committed more errors on lap 11 than lap 10 

under Control conditions (p = 0.042) but remained within criterion (<1 error/lap) 

performance throughout.   

Under both treatments, animals improved by an average of about an error per 

lap between the first and final lap of the training session, showing the ability to 

improve performance based on working memory (DMI improved 1.13 +/- 0.20 

errors/lap, Controls 0.96 +/- 0.23, mean +/- SEM) with no day effect (ANOVA p = 

0.7132) and no group effect (ANOVA p = 0.5762).  

 

DMI spatial memory related to REM and TR suppression, not QS 

Together these results indicate that decreases in spatial maze performance under DMI 

treatment reflect memory consolidation or reconsolidation errors associated with 

REM and TR sleep changes. Neither familiar nor novel maze performance was related 

to non-REM sleep (here referred to as quiet sleep, QS). The Pearson correlations (R) 

of familiar and novel maze improvement vs. QS ranged from -0.46 (p = 0.24) to 0.01 

(p = 0.98) for correlations with QS at baseline, during DMI and % change between 

conditions (data not shown). Consolidation of reversal learning was correlated with 

preservation of TR and reconsolidation of the familiar maze was associated with the 

preservation of REM sleep. On both familiar and novel mazes (Figure 4d), Control 

conditions showed significant improvement from day 1 (Figure 4b vs. 4d) and above 

criterion performance on all but the first two laps by day 5, whereas under DMI 

treatment, subjects were unable to achieve criterion performance (Figure 4c). Finally, 

on both familiar and novel mazes, alternative non-hippocampal performance 

strategies were utilized more heavily under DMI-induced REM sleep deprivation.  
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DMI procedural memory correlated to sleep parameters 

In sharp contrast with the effects of DMI on sleep and hippocampus dependent 

learning performance, DMI treatment performance on the procedural T-maze task 

was significantly correlated to the level of QS demonstrated by each subject during 

testing (Figure 5e) and independent of changes in REM sleep during the testing 

period (Figure 5 b,c). Treated subjects with the largest % increases in QS during DMI 

administration performed well on the T-maze whereas those with declines in QS 

made far fewer correct choices (Figure 5f). Although REM sleep during testing was 

not related to procedural task performance during DMI treatment, the percent REM 

sleep obtained during the baseline recordings was related to later T-maze 

performance (Figure 5a). More surprising was that the amount of REM sleep during 

baseline was inversely correlated with the % change in QS during DMI treatment (R 

= 0.8942, p = 0.0066, Supplemental Figure 5b). That is, the more REM sleep a subject 

showed during baseline, the higher the percent of QS during DMI and the better the 

procedural performance. Little relationship has been found between the amounts of 

REM sleep and non-REM sleep under normal conditions16,17, much less a relationship 

separated by days and experimental treatments.  

Insert Figure 5 here 

The number of correct choices and the latency to trial completion were highly 

correlated, as expected (Supplemental Figure 5a). Thus, those sleep parameters that 

were correlated with the number of correct T-maze choices were often also 

significantly correlated (inversely) with latency to trial completion (Table 1). T-maze 

performance was not correlated with the amount of waking or TR sleep obtained 

during baseline or testing periods (Supplemental Figure 4). DMI, then, increased 

procedural T-maze performance in a sleep dependent fashion according to the 

amount of REM sleep during baseline and QS during treatment.  
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DISCUSSION 
Overall, our main hypothesis was strongly supported: DMI suppressed REM 

sleep and inhibited hippocampus-dependent learning during antidepressant 

treatment. Both spatial reversal learning and reconsolidation of a familiar maze were 

significantly impaired, although compensatory non-hippocampal strategies partially 

rescued performance within a session. Surprisingly, we found that impairments in 

reversal task learning were best correlated with declines in the amount of the TR state 

rather than decreases in REM sleep. The subjects with the least %reduction in TR 

following DMI treatment show reversal learning performances most similar to the 

control condition: improving performance by an error or more per lap across the 5 

day period on the reversal learning task (Figure 2c). Subjects with declines in TR 

under DMI treatment showed substantially slower learning rates on the novel maze 

(0.5 errors/lap or less improvement). Conversely, reconsolidation of a familiar 

memory was poorest in those with the highest retention of the TR state during DMI 

testing (Figure 3d), as though processes during TR which best predicted successful 

incorporation of novel information were also unsupportive of the maintenance of an 

older schema. Reconsolidation of the familiar maze was, as predicted, also associated 

with the degree of REM sleep disturbance during antidepressants treatment (Figure 

3c). Procedural learning, however, was enhanced with augmented QS during testing 

(Figure 5e,f) and, surprisingly, by the amount of pre-test baseline REM sleep (Figure 

5a). Together, our findings suggest that the consolidation of novel reversal learning, 

reconsolidation of familiar memories, and consolidation of procedural memories may 

involve routines differentially called during different sleep states, with reversal 

consolidation occurring during TR (spindles), reconsolidation during REM sleep, and 

striatum-dependent procedural consolidation during QS.  
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REM sleep supports reconsolidation  

In a human fMRI study, REM sleep deprivation is coincident with a decrease in 

hippocampal function18. Indeed, induced neural activity during REM sleep has been 

shown to drive changes in synaptic weights19. Reactivation of neurons encoding a 

memory network occurs during REM sleep20 in a fashion supporting both LTP of new 

learning and the reversal of LTP for consolidated memories within the novelty 

encoding pathway21. Thus memories are likely revisited and reshaped during REM 

sleep outside of the original learning experience22. NA and DMI would impair the 

production of REM sleep through inhibition of REM-on cells in the pons. The 

prevention of REM sleep also prevents all REM sleep related processes including 

hippocampal reactivation, REM theta, and theta phase activity that support 

depotentiation (DP). These results for learning agree with those seen with REM sleep 

deprivation effects on hippocampal function in vitro through loss of induction or 

maintenance of long term potentiation (LTP)23,24 and reductions in excitability24. 

Without timely opportunity to enter REM sleep and accomplish synapse-specific 

strengthening or weakening, consolidation and reconsolidation could be impaired. In 

the closest study to ours with a once daily 10 mg/kg dose testing rats on an 8-arm 

radial maze similar impairments in learning were found25; presumably REM sleep was 

also suppressed in their study. 

 

TR sleep supports reversal learning but impairs reconsolidation  

Our data also suggest that consolidation of novel reversal learning and reconsolidation 

of familiar places are both proportional to the amount of TR sleep, though in opposite 

directions. Reactivation of hippocampal neurons and interaction with prefrontal 

cortex is uniquely intense during sleep spindles, possibly supporting memory 

consolidation26,27. Sleep spindles, which characterize the TR state, do not occur when 

NA, acetylcholine (ACh) or serotonin is present in the thalamus28. The DMI block of 
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NA reuptake during TR could decimate spindles and the hippocampal-forebrain 

reverberation that accompany them to incorporate novel information into established 

consolidated memory networks. Increases or a relative preservation of TR may 

maintain sufficient spindle-related reverberation to support remodeling of the 

synaptic memory network. Maintenance of familiar memories in the face of daily 

novel learning suffered in subjects with higher % TR during DMI. Finally, like REM 

sleep, TR is a state where P-waves are present, and P-wave density during TR and 

REM sleep have been strongly correlated with learning novel relationships29,30. Taken 

together, perhaps the strong correlation between novel learning and TR and the 

negative association with familiar memories through increased novel interference 

with familiar map memories, is not so surprising. These results also agree with recent 

findings on the function of sleep spindles31 in humans. However, little is known about 

this transient sleep state and its interaction with mechanisms of learning22.  

 

QS during consolidation supports dorsal striatal  learning  

Procedural learning, was, in our hands, enhanced proportionately with the degree of 

increase in QS under DMI treatment. Quiet sleep (QS) dependent consolidation in the 

striatum may depend on other processes such as changes in dopamine or 

acetylcholine levels during QS. Increases in QS have been shown to correlate with 

other procedural learning tasks such as soccer playing and tumbling on a trampoline32. 

Also, acquisition of tasks that depend on the dorsal striatum (e.g. caudate and 

putamen), like learning to always turn left at a T-maze junction33,34, often benefit 

when the competing hippocampal strategy is impaired35,36. In fact, striatal dependent 

learning strategies may be enhanced by REM sleep deprivation because they are 

enhanced by hippocampal inactivation.  

 

Basal REM sleep supports dorsal striatal procedural learning  
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Another group also found a positive correlation between the amounts of baseline 

REM sleep and striatal learning performance, the swim path length on a visible 

platform Morris water maze. Interestingly, amounts of serotonin in the striatal 

caudate structure correlated with the amounts of baseline REM sleep and the 

numbers of 5HT-2 receptors in the caudate correlated with this visible platform water 

maze task, implicating some function for baseline REM sleep and caudate serotonin 

levels in the motor task37 just as we found the relationship between baseline REM 

sleep and our striatal dependent fixed choice T-maze task. It would be interesting to 

test whether basal amounts of REM sleep correlate with all striatal-dependent 

learning tasks and whether serotonin is key to that involvement. 

  

Unified theory of sleep-dependent memory consolidation 

These results fit into a physiological conceptualization of sleep consolidation as 

depicted in Figure 6. The unifying principle underlying the TR- and REM–related 

reversal and reconsolidation learning benefits is based on literature demonstrating 

that the noradrenergic (NA) cells of the locus coeruleus (LC) are only off during the 

initialization of the characteristic spindles (10-15 Hz large amplitude waves that last 

1-2 seconds) of TR and during REM sleep38. The absence of NA is necessary for 

synaptic depotentiation (DP), and DP is necessary alongside its opposite, LTP to 

efficiently incorporate newly learned information into previously established 

memory networks39-41. Specifically, NA acts at beta adrenergic receptors to block the 

action of calcineurin. The activation of calcineurin leads to the dephosphorylation of 

CAMK-II and MAPK, whose phosphorylation is thought to sustain LTP (see 42). 

When NA blocks calcineurin, it blocks one half of the process of reshaping a synaptic 

network: the deconstruction side of remodeling, DP. Thus, DMI enhancement of NA 

levels supports synaptic strengthening (LTP), while preventing depotentiation in the 

hippocampus43,44. Striatal dependent tasks may be immune to REM and TR sleep 
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deprivation because the LC NA system does not project to the dorsal striatum45 and 

the dorsal striatum does not respond to NA46, and without NA, DP may always be 

possible. LC targets of the hippocampus and prefrontal cortex, however, may require 

the LC silence of TR and REM sleep as the only states that support efficient 

remodeling of memory networks for learning. 

Insert Figure 6 here 

 

DMI sleep effects parallel human antidepressant use 

These findings support those found by Rasch et al.47 who demonstrated that 

antidepressants enhanced procedural learning. Their study and ours indicate that the 

effects of REM suppression on striatum dependent procedural memory are quite 

different than on hippocampus dependent spatial memory. Some antidepressants, but 

not others, have been reported to improve memory function48, which may depend on 

the sleep outcomes of the particular antidepressant and the memory function tested.  

Antidepressant administration is an effective method of reducing REM sleep49. 

Stress is unlikely to mediate the changes seen under DMI treatment. Studies showing 

stress effects of REM sleep deprivation use a movement-restricting instrumental REM 

sleep deprivation continuously for many days7. This profile is quite unlike the partial-

day non-instrumental REM deprivation method used in this study and unlike the 4-6 

h REM low water under multiple platform restriction method we have used in the 

past1,2, which likely avoids activation of the HPA axis. We were able to use a dose 

resulting in transient REM reduction that fully dissipated by 10 hours then returned 

to normal and produced this effect repeatedly across all 4 days of treatment. Both the 

pharmokinetics (despiramine’s half-life of 4.6 h) 47 and the general effects on sleep (8-

10 h) architecture based on our results indicate that DMI’s action had ceased many 

hours before the following day’s run and thus did not likely mediate the change in 
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daily performance directly, but rather worked during the post-learning consolidation 

period when DMI actively suppressed REM sleep. 

Desipramine suppresses human REM sleep most strongly in the initial 3 

weeks, whereafter REM sleep activity begins to increase slightly toward normal levels 

despite continued chronic administration 15. If the REM sleep state itself is responsible 

for hippocampal memory consolidation, then consolidation related performance 

deficits may improve to somewhat several weeks into treatment coincident with the 

partial restoration of REM sleep: a hypothesis that remains to be tested. Additionally, 

we determined that although REM sleep suppressing antidepressant treatments 

impaired hippocampus-dependent learning, alternative strategies were augmented 

which improve task performance. Patients taking REM-suppressing antidepressants 

may also benefit from selecting alternative, REM-immune, non-hippocampal 

strategies to solve the learning problems at hand. 

 

SUMMARY 
Overall, these spatial and procedural learning results offer additional insight 

into our understanding of how different sleep states may suppress or augment the 

consolidation of memories during sleep. This is the first measure of reconsolidation 

memory under REM sleep deprivation of any kind, and the first test of antidepressant 

medication effects on the recall of familiar memories. Our results indicate that the 

sleep period following the recall of familiar memories is important for the 

reconsolidation process in a manner previously shown for the formation of an original 

memory.  

Although the subjects used in the present study were normal rats rather than 

depressed humans, the profound effect we observed of this standard dose of 

desipramine on sleep and hippocampal dependent memory vs. striatal dependent 

memory suggests that further careful testing should be conducted on sleep-dependent 
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learning strategy selections in normal humans as well as those suffering with 

depression. 

 Future studies could offer insight into whether other antidepressants also 

negatively affect hippocampus dependent memories while benefiting procedural 

learning. Further, these results, taken together, lead us to newly propose the specific 

sleep stages that may be most important for consolidating different kinds of 

sometimes competing memory tasks, with REM sleep reconsolidating familiar 

memories, TR consolidating novel reversal learning at the expense of the old familiar 

memory, and non-REM quiet sleep enhancing procedural strategies. 
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FIGURE LEGENDS 
FFigure 1. (aa) 30 min after lights on rats were trained on the 8-box maze (familiar, 

followed by novel ) and T-maze tasks. Testing on each apparatus took approximately 

30 minutes. Animals were then given 10 mg/kg desipramine (DMI) in sweetened 

mash or Control sweetened mash, returned to their home cages, and their sleep 

recorded for 16 h. The % time spent in REM sleep was calculated for every 2 h time 

block, averaged per condition, and displayed with +/- SEM bars. The time the lights 

went off is depicted in a blue bar above the graph. (bb) Hypnogram of sleep states 

(vertical axis) over 8 hours (horizontal axis) after training in one rat during baseline 

and (cc) the same rat after training and 10 mg/kg desipramine ingestion. With 10 

mg/kg DMI after training, mean REM sleep time suffered a mean 63.9 % reduction 
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(range 22.7% to 93.8%) in the 10-12 h light (sleep) period after the maze run 

compared with each animal’s own baseline at the same circadian time. (dd) % time of 

the sleep (light) period spent in REM sleep during baseline and sequential days of 10 

mg/kg desipramine administration (n=10). (ee) Percent recording time spent in REM 

sleep during the 1st 6 h critical REM sleep window (grey bar below 1st 6 h of (a)), 

after training with desipramine or control mash treatment (p = 0.00000004). (ff) No 

REM sleep adaptation to desipramine was present during the critical window from 

the first to the last day of testing (p = 0.95, t-Test). 

 

Figure 22. Effect of 10 mg/kg desipramine (DMI, filled squares) on reversal learning 

(Novel). (aa) Average number of errors committed per lap declined half as quickly 

under DMI as compared to control treatment and did not reach criterion within the 5 

days of training. (bb) Errors after maze rotation reveal use of simple cues rather than 

allocentric hippocampal strategies to solve the spatial task. DMI treated rats showed 

increased errors after maze rotations on the Novel maze (* = p < 0.05). (cc) The highest 

performance gains on the novel maze during DMI treatment were made by those 

animals with the smallest declines in the transition to REM sleep (TR) state compared 

to their baseline amounts. (dd) Mean losses in the TR state under DMI were 30.8% on 

average (paired t-test p=0.016) with all animals expressing a loss between 75% to 13% 

TR with the exception of a single animal showing an increase of 23% more TR state 

under DMI. 

 

Figure 3. Effect of 10 mg/kg desipramine (DMI, filled squares) on familiar spatial maze 

reconsolidation. (aa) Desipramine worsened performance on the already consolidated 

familiar maze configuration whereas non-treated animals continued to make small 

improvements on the Familiar maze over the same time period. (bb) DMI treated rats 

showed increased errors after rotations of the Familiar maze revealing increased use 
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of non-hippocampal strategies. Controls also had significantly more errors after maze 

rotation on the familiar maze but even so performed better than the 1 error per lap 

criterion (** = p < 0.01). (cc) The positive correlation between a change in REM 

amounts and performance on the familiar maze reconsolidation task (R = 0.8326, p = 

0.0103) was driven by the two subjects least responsive to DMI. The subject with 

highest improvement was eliminated from Familiar maze comparisons due to an 

inadvertent 5 day prior reversal task without familiar rehearsal. (dd) The largest 

performance losses on the familiar maze were made by animals with the highest 

amounts of TR sleep during DMI treatment.  

 

Figure 4. Lap-by-lap performance on the first (aa, b) and last (cc,dd) days of 8-box 

training. The dashed line represents criterion performance. The increase in errors/day 

between aa and cc, especially in the first few laps, reveal deficits in reference memory 

between days, while a drop in errors across laps within each day suggests normal 

within session learning based on working memory. Rats were removed from the maze 

to a resting pot for 2 min between laps 5 and 6, and removed for rotation of the maze 

between laps 10 and 11. Increased errors on lap 6 vs. 5 reveal a short term memory 

deficit and increased errors on lap 11 vs. lap 10 reveal use of local or egocentric cues 

rather than hippocampal dependent allocentric cues. All groups showed intact 

working and short term memory as there were always declines in errors across the 

first 10 laps without consistent increases in errors after the lap 5 rest.  

 

Figure 5. Performance on the T-maze procedural task correlated with the amount of 

REM sleep during the baseline sleep period (aa) the amount of QS during the DMI 

testing period (ee), and the % change in QS from baseline to DMI testing (ff), but not 

with any other sleep parameter measured. See Supplemental Figure 5 for QW and TR 

comparisons. Performance on the procedural task was not correlated with % REM 
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sleep during testing, the % change in REM sleep from baseline to testing, or the % QS 

during baseline (bb, cc, dd). 

 

Figure 6. Model schematic of our results (outlined yellow arrows and lines) in a 

physiological conceptualization of sleep-dependent memory consolidation. T-capped 

lines show inhibitory relationships. Locus ceoruleus (LC) noradrenergic (NA) cells 

inhibit production of thalamic spindles and therefore TR and inhibit production of 

REM sleep in the pontine reticular formation (PRF). DMI (yellow molecules) 

prolongs NA effects at synapses and potentiate NA effects to inhibit TR and REM. 

Reduced consolidation of reversal learning was proportional to the reduction of TR 

(yellow arrows with purple outlines). DMI would enhance NA prevention of spindles 

and depotentiation (DP) processes (yellow “x”). Information transfer from the 

hippocampus to the prefrontal cortex (PFC), important for reversal learning, is 

uniquely strong in TR sleep. DMI would impair REM sleep and all REM sleep related 

processes including reactivation and theta-associated bidirectional plasticity (LTP and 

DP). Reconsolidation was impaired proportionate to REM sleep reduction from 

baseline (yellow arrows with red outlines). In the striatum, NA has no effect46 and DP 

may occur any time. Procedural learning is proportionate to the amount of Quiet 

sleep (QS) (yellow arrow, blue outline) which is inversely proportionate to the 

amount of REM sleep and correlated with the amount of TR suppression. Mutually 

competing striatal and hippocampal strategy selections are shown in the T-capped 

line between structures.   
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METHODS 
Animals and materials 

Thirty male Fisher 344 rats aged 6 months and weighing approximately 250-350g 

(Simonsen: Gilroy, CA) were individually housed in plastic cages (45.7 x 24.1 x 20.3 

cm) with shaved wood bedding in a climate controlled (22 ± 3Cº, and 73 ± 5% 

humidity) chamber. The chambers ran on a 12:12h light/dark cycle. Food and water 

were available ad libitum. The visible platform version of the Morris water maze task 

was administered to test visual acuity (Supplemental Figure 4c). For this task, animals 

were placed in a circular tank of 24º C water and had to locate and swim to a highly 

visible platform 2 cm above the surface of the water to escape. The animals swam 10 

trials a day for two consecutive days, and all but 1 were selected to continue the study 

as their performance was within 2 SD of the average latency to reach the platform. 

Proficient performance on this visible platform version of the water maze was 

essential for their continuation in the study due to the need to use visible distal spatial 

cues to successfully solve the 8-box maze.  

Electrode implantation 

All 30 animals were given antibiotic an analgesic and anesthetized with 60 

mg/kg sodium pentobarbital and then placed in a stereotaxic apparatus. Four 

miniature screw electrodes were bilaterally implanted for electroencephalography 

(EEG) monitoring: 2 frontal cortex screw electrodes and 2 hippocampal screw 

electrodes. Two electrodes were threaded into the dorsal neck muscles to record 

electromyography (EMG). All electrodes were crimped to gold pins threaded to a 

plastic pedestal head stage (Plastics One, Roanoke, VA) and the entire assembly was 

affixed to the cranium with dental acrylic. Sutures closed the skin around the 

implant. Animals were monitored until they were responsive and mobile then 

returned to their home cage to recover, continuing on antibiotic and analgesic for 3 

days then left undisturbed an additional 4 with ad libitum food and water. All animal 
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procedures were carried out in accordance with the National Institute of Health guide 

for the care and use of laboratory animals and in accordance with the University of 

Michigan Committee on the Use and Care of Laboratory Animals.  

Nine rats were used for an initial DMI dose-response study. Rats were given 

DMI p.o. at either 8 (n=3), 10 (n=3) or 23 (n=3) mg/kg within 20 min after running 

three mazes (Familiar spatial, reversal spatial, and procedural T-maze). At 10 mg/kg, 

mean REM sleep time suffered a mean 63.9 % reduction (range 22.7% to 93.8%) in 

the 10-12 h light (sleep) period after the maze run compared with each animal’s own 

baseline at the same circadian time (Supplemental Figure 1a vs. b). As the 10 mg/kg 

reduction in REM sleep time was comparable to that of human whereas the 8 mg/kg 

dose had little effect on sleep and the 20 mg/kg dose showed some adverse health 

consequences (increased heart rate, slowed maze performance), the 10 mg/kg dose 

was used for the remaining experiments. Data from the 3 pilot rats run at 10 mg/kg 

were folded in with another 21 rats remaining  tested under Control and DMI 

treatment conditions in pairs run in semi-counterbalanced treatment order for 

familiar maze performance, reversal learning, and T-maze performance 

(Supplemental Figure 4c). Eight of the DMI-treated rats were recorded during all 

non-training times and their records analyzed in detail for baseline vs. DMI sleep 

characteristics and task performance relationships. 

Motivation 

Food was withheld for 2 d prior to training sessions. The food received during 

testing was a mash of ground rat chow pellets mixed with water. A 2 ml mash 

supplement was given p.o. to all rats after training each day as the vehicle for the 

DMI (or no-DMI control). Consumption of DMI-treated or control food was 

voluntary in most cases and was checked by examining the contents of the 

supplement bowl after 20 min. Any remaining food was placed at the back of the 

animal’s mouth to insure consumption. If body weight dropped to near 80% of free 
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feeding weight, the rats were offered further supplement mash in a bowl in their 

home cage post-training and post DMI to maintain the 80% minimum free feeding 

weight. Total daily intake of food was equivalent to ~40 cc mash/day.    

Place learning task description 

The raised 8 box maze spatial memory task50 is a rectangular track with 8 boxes 

oriented symmetrically around the perimeter of the track. Three of the eight positions 

contained 0.2 cc of available food in a shallow dish behind a hinged door.  All boxes 

were baited with unreachable food behind a wire mesh just below the door to prevent 

the successful use of odor-cue location strategies. The familiar maze was configured 

with the same baited box positions every day of pretraining (min 10 days) and the 5 

days of testing. The novel maze was a reversal task: the maze remained in the same 

room and one of the boxes of the familiar configuration remained baited but the other 

two formerly baited boxes where changed to new box locations on the maze. To 

encourage forward motion, the animals were required to make one full clockwise lap 

before all 3 baited boxes were refilled. Each training session on each 8-box maze 

lasted 30 min. Every 5 laps, rats were removed from the track and placed in a towel-

lined pot for 2 min to encourage reliance on short term reference memory 

(hippocampally mediated) over working memory. Errors committed on each lap were 

counted as follows: ambulating past a baited box without stopping was considered an 

error of omission, inspecting a box with no accessible food (unbaited) was an error of 

commission, and hesitating in front of unbaited boxes was considered an error of 

hesitation. The experimenter running and scoring the performance of the animal was 

blind to the drug treatment.  

The main outcome measure on the 8-box maze was the number of errors 

committed on each lap and the total errors per lap per maze and per training day. An 

average of less than 1 error per lap over the session was considered performance 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
52

4.
1 

: P
os

te
d 

13
 O

ct
 2

01
1



Watts et al. DMI suppresses REM sleep and impairs learning P a g e  | 23 

criterion. Once each animal met criterion during the pre-training period, the 5 day 

testing period began.  

Food locating strategies   

Without the hippocampus, animals rely more heavily on intramaze cues to 

successfully perform the task 1. In order to test the use of non-hippocampally 

dependent solution strategies, the maze was rotated 180º after the 10th lap, the boxes 

cleared of any accessible food and new boxes in the old positions baited, maintaining 

the same functional reward positions within the room. A heavy reliance on non-

spatial cues to find baited boxes is accompanied with a higher number of errors per 

lap on lap 11 (after rotation) than on lap 10. Working memory was assessed by 

comparing the decline in errors (or maintenance of low errors) over each 5 lap set 

since there were no interruptions in maze running within each set. Dependence on 

reference memory was assessed by retrieval efficiency between days, which was 

calculated as the number of errors in the first 3 laps each day minus the number 

committed the last 3 laps of the day before.  

T-maze task description: 

All animals were tested on 15 trials of the fixed choice T maze task 

immediately after training on the 8-box maze, and in a different room from the 8-box 

maze. The T-maze consisted of four arms joined together to form a “plus” sign. Each 

arm is 21”x 6”x 9” (length x width x height). On each trial one of the arms, chosen 

semi-randomly, was blocked off by a wooden barrier and the opposite arm was the 

starting position. From the start position rats had to advance to the center choice 

point and either turn right or left to go to the end of the arm for a reward. Rats were 

rewarded only if they consistently turned in the same direction from the start arm no 

matter the position of the start and choice arm in the room. The correct turn 

direction for each rat was determined by their own first choice on the first trial. The 

rats were allowed 60 s to traverse to the end of the chosen arm, then placed in a 
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towel-lined clay pot to rest for another 60 s. At the completion of 15 trials, the 

average latency to reward and percent correct turn direction choices were calculated.     

DMI dose treatment 

An initial dose-response pilot study was undertaken where 8 (n=3) 10 (n=3) 

and 23 (n=3) mg/kg was given and sleep responses measured. In addition 4 rats were 

given DMI twice a day, just after running and 12 h later. Their performance results 

were compared to those given DMI once per day just after training (Supplemental 

Figure 1a, b). No difference was found under the two conditions (repeated measures 

ANOVA, p = 0.505) so data were collapsed across methods for statistical analyses and 

all further experiments were conducted with once per day administration after 

training. Fifteen rats were given 10 mg/kg DMI in solution added to 2 ml of food 

mash or no DMI in 2 ml mash after each day’s testing session just before returning to 

their home cages.  

Sleep recording/scoring/analysis: 

A cable from the headstage was connected to a commutator within the home 

cage to allow free range of motion while recording EEG and EMG signals. The 

commutator was connected via a shielded cable (Plastics One, Roanoke, VA) to the 

Lynx 8 patch panel and amplifier units (Neuralynx, Tuscon, AZ) and to the AD data 

acquisition system (Wilson, M. MIT). After three days habituation to the recording 

conditions, training began on the 8-box and T-mazes at circadian time 0.5 h after 

lights on for 1 h each day. EEG and EMG recordings began during the second baseline 

training day within 1.5 h of the training session and continued for 24 hours on the 

last two days of the pre-training period, (baseline) and within 1.5 hours of the testing 

session on day 1-5 of testing, recording for 22.5 hours each day. Eight rats were 

recorded 22.5 h /day (non-training time) for comparisons of sleep and performance 

parameters.  
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Sleep/waking states were first scored automatically from EEG and EMG 

recordings. Every 10-s epoch was assigned a state of active waking, quiet waking, 

quiet sleep, transition to REM, or REM sleep by an in-house automatic sleep scoring 

program (Gross et al., 2009), then the scored states were examined and confirmed or 

corrected after visual inspection by an expert human scorer blind to the experimental 

condition of the animal.   

Statistics 

Parametric tests such as t-tests and ANOVAs were run after tests for Normality of the 

data showed no violations. The non-parametric Wilcoxon sign-rank test was run on 

the comparison of number of laps run for DMI and Control rats after the DMI lap 

distribution failed the normality test (median =15, range =11-27 laps, skewed high p = 

0.0003). Paired t-tests were used to evaluate significance (n=8, α = 0.05) of sleep state 

changes from baseline to DMI conditions in the same animals (Figure 1) and to 

compare lap 10 vs. lap 11 errors within each group (α = 0.05) (Figure 4). A t-test was 

used to compare weights between DMI and control groups on the last of the 5 day test 

period. Repeated measures MANOVAs (α = 0.05) were performed on the number of 

errors/lap over testing days 1-5 and between groups (Figure 2a and Figure 3a). 

Familiar maze data from the first day (only) of 2 DMI/Control pairs was discarded 

because a short break between the last pretraining and first testing day increased 

familiar day 1 errors to over criterion (<1 error/lap). Familiar DMI week data were 

not analyzed from one rat as 1 familiar box had been inadvertently reversed during 

the prior week in that one animal, putting the familiarity of the familiar maze during 

DMI test week into question. Thus the statistic of the Familiar DMI group were run 

with an n=14 rather than 15. Percent correct choices and latency on the T-maze task 

over each day for each rat and improvements across the testing days for the familiar 

and reversal mazes were the performance metrics correlated to % sleep state 

parameters during the baseline period of the same subject and testing conditions and 
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against the change in each of those states from baseline to DMI conditions (n=8, α = 

0.01 to correct for multiple comparisons). Normality tests were run using JMP (SAS, 

Carey, NC). Paired T-tests were done using Microsoft Excel 2004 Data Analysis Add-

In pack (Microsoft, Redmond, WA). MANOVAs were run with SPSS (IBM, Armonk, 

NY) and Pearsons’s correlation matrix statistics were run using StatPlus (AnalystSoft).  
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Variable vs. Variable R p 

REM Baseline vs. % Correct 0.923 0.0011 
QS (DMI) vs. % Correct 0.910 0.0017 
% change in QS vs. Latency -0.895 0.0027 
QS (DMI) vs. Latency -0.879 0.0041 
REM Baseline vs. Latency -0.872 0.0047 
% change in TR vs. Nov improvement 0.867 0.0053 
TR (DMI) vs. Fam improvement -0.865 0.0119 

 

 

TTable 1. CCorrelation Coefficient Matrix. All significant sleep vs. performance 

comparisons are shown for the T-maze (top 5 rows) and spatial mazes (bottom two). 

To correct for multiple comparisons an alpha = 0.01 was selected. No waking 

parameters were significantly correlated with T-maze or 8-box maze performance 

metrics. The amount of REM sleep during the baseline recording was most correlated 

to the % of correct choices and speed of trial completion on the T-maze. The amount 

of QS during desipramine administration was correlated with both the % correct 

choice and speed of completing the T-maze trial. The larger the increase in QS after 

desipramine, the faster the T-maze trial completions. On the 8-box maze the degree 

of improvement in the Novel maze under desipramine treatment was most correlated 

with the preservation of the transition to REM sleep state as shown in Figure 2b. 

Improvement on the Novel maze was not significantly correlated with any other 

sleep parameter. Those animals whose performance on the Familiar maze was best 

preserved under desipramine treatment were those with the smallest amount of TR 

sleep, as shown in Figure 3c. 
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