Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiogenic shock in ACS. Part 1: prediction, presentation and medical therapy

Abstract

Ischemic cardiogenic shock is a complex, self-perpetuating pathological process that frequently causes death irrespective of medical therapy. Early definition of coronary anatomy is a pivotal step towards survival. Those destined to develop shock are likely to have three-vessel or left main stem disease with previously impaired left ventricular function. Early reperfusion of the occluded artery can limit infarct size, but ischemia–reperfusion injury or the 'no-reflow' phenomenon can preclude improvement in myocardial contractility. Emergence of shock depends upon the volume of ischemic myocardium, stroke volume, and peripheral vascular resistance. If cytokine release triggers the systemic inflammatory response, systemic vascular resistance falls and inadequate coronary perfusion pressure heralds the downward spiral. Survival depends on early recognition of shock, followed by aggressive targeted treatment of left, right, or biventricular failure. The goal is to prevent end-organ dysfunction and severe metabolic derangement by raising mean arterial pressure, which is achieved with inotropes and vasopressors, often at the expense of tachycardia, elevated myocardial oxygen consumption, and extended ischemia. The value of intra-aortic balloon counter-pulsation is now questioned in patients with advanced shock. When mean arterial pressure is <55 mmHg with serum lactate >11 mmol/l, death is likely and mechanical circulatory support becomes the only chance for survival.

Key Points

  • Cardiogenic shock complicates 5–10% of ST-segment elevation myocardial infarctions and 2–3% of non-ST segment elevation coronary syndromes, with mortality ranging from 40% to 80%

  • Angiographic findings during primary angioplasty can predict cardiogenic shock, but early reperfusion has decreased the incidence of full thickness infarction and improved survival

  • Ventricular septal rupture occurs in up to 0.5% of patients with ST-segment elevation myocardial infarction, whereas severe mitral regurgitation occurs in 10%, and free-wall rupture in 3%

  • Cytokine release can trigger the systemic inflammatory response, causing low peripheral vascular resistance and profound refractory shock in around one-third of cases

  • Management of primary left ventricular failure involves early reperfusion and administration of adrenergic inotropes and vasopressors; right ventricular failure is treated with volume loading, inotropes, and pulmonary vasodilators

  • When mean arterial pressure is <55 mmHg, serum lactate >11 mmol/l, base deficit >12 mmol/l, and SvO2 <65% despite medical therapy, recovery is unlikely without mechanical circulatory support

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-perpetuating mechanisms of cardiogenic shock.
Figure 2: Influence of PPCI on extent of myocardial infarction and stunning.
Figure 3: Myocardial disruption after acute myocardial infarction.
Figure 4: In-hospital mortality in cardiogenic shock by stage I (clinical) severity category.
Figure 5: Medical management of acute right ventricular dysfunction after myocardial infarction.

Similar content being viewed by others

References

  1. Hasdai, D., Topol, E. J., Califf, R. M., Berger, P. B. & Holmes, D. R. Jr. Cardiogenic shock complicating acute coronary syndromes. Lancet 356, 749–756 (2000).

    CAS  PubMed  Google Scholar 

  2. Thom, T. et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Committee. Circulation 113, e85–e151 (2006).

    Google Scholar 

  3. Hochman, J. S. et al. Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an International Registry. SHOCK Registry Investigators. Circulation 91, 873–881 (1995).

    CAS  PubMed  Google Scholar 

  4. Hochman, J. S. et al. Early revascularisation in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N. Engl. J. Med. 341, 625–634 (1999).

    CAS  PubMed  Google Scholar 

  5. The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes (GUSTO IIb) Angioplasty Substudy Investigators. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. N. Engl. J. Med. 336, 1621–1628 (1997).

  6. Grines, C. L. et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N. Engl. J. Med. 328, 673–679 (1993).

    CAS  Google Scholar 

  7. Jeger, R. V. et al. Ten-year trends in the incidence and treatment of cardiogenic shock. Ann. Intern. Med. 149, 618–626 (2008).

    PubMed  Google Scholar 

  8. Fang, J., Mensah, G. A., Alderman, M. H. & Croft, J. B. Trends in acute myocardial infarction complicated by cardiogenic shock 1979–2003, United States. Am. Heart J. 152, 1035–1041 (2006).

    PubMed  Google Scholar 

  9. Singh, M. et al. Long-term outcome and its predictors among patients with ST-segment elevation myocardial infarction complicated by shock: insights from the GUSTO-1 trial. J. Am. Coll. Cardiol. 50, 1752–1758 (2007).

    PubMed  Google Scholar 

  10. Hochman, J. S. et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 295, 2511–2515 (2006).

    PubMed  PubMed Central  Google Scholar 

  11. Holmes, D. R. Jr. et al. Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J. Am. Coll. Cardiol. 26, 668–674 (1995).

    PubMed  Google Scholar 

  12. John, R. et al. Experience with the Levitronix CentriMag circulatory support system as bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J. Thorac. Cardiovasc. Surg. 134, 351–358 (2007).

    PubMed  Google Scholar 

  13. Sheu, J. J. et al. Early extra corporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit. Care Med. 38, 1810–1817 (2010).

    CAS  PubMed  Google Scholar 

  14. Webb, J. G. et al. Implications of the timing of onset of cardiogenic shock after acute myocardial infarction: a report from the SHOCK trial registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1084–1090 (2000).

    CAS  PubMed  Google Scholar 

  15. Hochman, J. S. et al. Cardiogenic shock complicating acute myocardial infarction – etiologies, management and outcome: a report from the SHOCK trial registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1063–1070 (2000).

    CAS  PubMed  Google Scholar 

  16. Menon, V. et al. The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure. A report from the SHOCK trial registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1071–1076 (2000).

    CAS  PubMed  Google Scholar 

  17. Hasdai, D. et al. Platelet glycoprotein IIb/IIIa blockade and outcome of cardiogenic shock complicating acute coronary syndromes without persistent ST-segment elevation. J. Am. Coll. Cardiol. 36, 685–692 (2000).

    CAS  PubMed  Google Scholar 

  18. Kohsaka, S. et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch. Intern. Med. 165, 1643–1650 (2005).

    PubMed  Google Scholar 

  19. Hochman, J. S. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation 107, 2998–3002 (2003).

    PubMed  Google Scholar 

  20. Patel, M. R. et al. Prognostic usefulness of white blood cell count and temperature in acute myocardial infarction (from the CARDINAL trial). Am J Cardiol. 95, 614–618 (2005).

    PubMed  Google Scholar 

  21. Geppert, A. et al. Plasma concentrations of interleukin-6, organ failure, vasopresser support and successful coronary revascularisation in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit. Care Med. 34, 2035–2042 (2006).

    CAS  PubMed  Google Scholar 

  22. Cotter, G. et al. LINCS: L-NAME (a No Synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur. Heart J. 24, 1287–1295 (2003).

    CAS  PubMed  Google Scholar 

  23. Alexander, J. H. et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomised controlled trial. JAMA 297, 1657–1666 (2007).

    CAS  PubMed  Google Scholar 

  24. Ito, H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 3, 499–506 (2006).

    PubMed  Google Scholar 

  25. Ndrepepa, G. et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 55, 2383–2389 (2010).

    PubMed  Google Scholar 

  26. Bolli R. Mechanism of myocardial “stunning”. Circulation 82, 723–738 (1990).

    CAS  PubMed  Google Scholar 

  27. Reynolds, H. R. & Hochman, J. S. Cardiogenic shock: current concepts and improving outcomes. Circulation 117, 686–697 (2008).

    PubMed  Google Scholar 

  28. Jennings, R. B. & Reimer K. A. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation 68 (Suppl. I), I25–I36 (1983).

    CAS  PubMed  Google Scholar 

  29. Bonnefoy, E. et al. Primary angioplasty versus prehospital fibrinolysis in acute myocardial infarction: a randomised study. Lancet 360, 825–829 (2002).

    Article  Google Scholar 

  30. Asanuma T. et al. Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction. Myocardial Contrast Echocardiographic Study. Circulation 96, 448–453 (1997).

    CAS  PubMed  Google Scholar 

  31. Babaev, A. et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 294, 448–454 (2005).

    CAS  PubMed  Google Scholar 

  32. Antman, E. M. et al. ACC/AHA guidelines for the management of patients with ST elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 110, e82–e292 (2004).

    PubMed  Google Scholar 

  33. Westaby, S. Anastasiadis, K. & Wieselthaler, G. M. Cardiogenic shock complicating ACS. Part 2: role of mechanical circulatory support. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2011.205.

    PubMed  Google Scholar 

  34. Birnbaum, Y., Fishbein, M. C., Blance, C. & Siegal, R. Ventricular septal rupture after acute myocardial infarction. N. Engl. J. Med. 347, 1426–1432 (2002).

    PubMed  Google Scholar 

  35. Westaby, S., Parry, A., Ormerod, O., Gooneratne, P. & Pillai, R. Thrombolysis and post infarction ventricular septal rupture. J. Thorac. Cardiovasc. Surg. 104, 1506–1509 (1992).

    CAS  PubMed  Google Scholar 

  36. Maltais, S. et al. Postinfarction ventricular septal defects: towards a new treatment algorithm. Ann. Thorac. Surg. 87, 687–692 (2009).

    PubMed  Google Scholar 

  37. Moreyra, A. E. et al. Trends in incidence and mortality rates of ventricular septal rupture during acute myocardial infarction. Am. J. Cardiol. 106, 1095–1100 (2010).

    PubMed  Google Scholar 

  38. The GUSTO investigators. An international randomised trial comparing four thrombolytic strategies for acute myocardial infarction. N. Engl. J. Med. 329, 673–682 (1993).

  39. Yip, K. H. et al. The potential impact of primary cutaneous coronary intervention on ventricular septal rupture complicating acute myocardial infarction. Chest 125, 1622–1628 (2004).

    PubMed  Google Scholar 

  40. Menon, V. et al. Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: A report from the SHOCK trial registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1110–1116 (2000).

    CAS  PubMed  Google Scholar 

  41. Mann, J. M. & Roberts, W. C. Acquired ventricular septal defect during acute myocardial infarction: analysis of 38 unoperated necropsy patients and comparison with 50 unoperated necropsy patients without rupture. Am. J. Cardiol. 62, 8–19 (1988).

    CAS  PubMed  Google Scholar 

  42. Prêtre, R., Rickli, H., Ye, Q., Benedikt, P. & Turina, M. I. Frequency of collateral blood flow in the infarct-related coronary artery in rupture of the ventricular septum after acute myocardial infarction. Am. J. Cardiol. 85, 497–499 (2000).

    PubMed  Google Scholar 

  43. Crenshaw, B. S. et al. Risk factors, angiographic patterns and outcomes in patients with ventricular septal defect complicating acute myocardial infarction. GUSTO-I (Global Utilization of Streptokinase and TPA for Occluded Coronary Arteries) Trial Investigators. Circulation 101, 27–32 (2000).

    CAS  PubMed  Google Scholar 

  44. Poulsen, S. H. et al. Ventricular septal rupture complicating acute myocardial infarction: clinical characteristics and contemporary outcome. Ann. Thorac. Surg. 85, 1591–1596 (2008).

    PubMed  Google Scholar 

  45. Ryan, T. J. et al. Update: ACC/AHA guidelines for the management of patients with acute myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J. Am. Coll. Cardiol. 34, 890–911 (1999).

    CAS  PubMed  Google Scholar 

  46. Mantovani, V. et al. Post-infarction cardiac rupture: surgical treatment. Eur. J. Cardiothorac. Surg. 22, 777–780 (2002).

    PubMed  Google Scholar 

  47. Peuhkurinen, K., Risteli, L., Jounela, A. & Risteli, J. Changes in interstitial collagen metabolism during acute myocardial infarction treated with streptokinase or tissue plasminogen activator. Am. Heart J. 131, 7–13 (1996).

    CAS  PubMed  Google Scholar 

  48. Bueno, H., Martinez-Sélles, M., Pérez-David, E. & López-Palop, R. Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. Eur. Heart J. 26, 1705–1711 (2005).

    CAS  PubMed  Google Scholar 

  49. Becker, A. E. & van Mantgem, J. P. Cardiac tamponade. A study of 50 hearts. Eur. J. Cardiol. 3, 349–358 (1975).

    CAS  PubMed  Google Scholar 

  50. Figueras, J., Curos, A., Cortadellas, J. & Soler-Soler, J. Reliability of electromechanical dissociation in the diagnosis of left ventricular free wall rupture in acute myocardial infarction. Am. Heart J. 131, 861–864 (1996).

    CAS  PubMed  Google Scholar 

  51. Railt, M. H., Kraft, C. D., Gardner, C. J., Pearlman, A. S. & Otto, C. M. Subacute ventricular free wall rupture complicating myocardial infarction. Am. Heart J. 126, 946–955 (1993).

    Google Scholar 

  52. Aymong, E. D., Ramanathan, K. & Buller, C. E. Pathophysiology of cardiogenic shock complicating acute myocardial infarction. Med Clin. North. Am. 91, 701–712 (2007).

    PubMed  Google Scholar 

  53. Chevalier, P. et al. Perioperative outcome and long-term survival of surgery for acute post-infarction mitral regurgitation. Eur. J. Cardiothorac. Surg. 26, 330–335 (2004).

    PubMed  Google Scholar 

  54. Tavakoli, R. et al. Results of surgery for irreversible moderate to severe mitral valve regurgitation secondary to myocardial infarction. Eur. J. Cardiothorac. Surg. 21, 818–824 (2002).

    PubMed  Google Scholar 

  55. Hasdai, D. et al. Frequency and clinical outcome of cardiogenic shock during acute myocardial infarction among patients receiving reteplase or alteplase. Results from GUSTO III. Global use of Strategies to Open Occluded Coronary Arteries. Eur. Heart J. 20, 128–135 (1999).

    CAS  PubMed  Google Scholar 

  56. Jolly, S. S. et al. Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST segment elevation acute coronary syndromes (NSTE ACS): insights from the Global Registry of Acute Coronary Events. Heart 97, 197–202 (2011).

    CAS  PubMed  Google Scholar 

  57. Wong, S. C. et al. Angiographic findings and clinical correlates in patients with cardiogenic shock complicating acute myocardial infarction: A report from the SHOCK Trial registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1077–1083 (2000).

    CAS  PubMed  Google Scholar 

  58. Sanborn, T. A. et al. Impact of thrombolysis, intra-aortic balloon pump counter pulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK trial registry. Should we emergently revascularize occluded coronaries for cardiogenic shock? J. Am. Coll. Cardiol. 36, 1123–1129 (2000).

    CAS  PubMed  Google Scholar 

  59. Garcia-Alvarez, A. et al. Early risk stratification of patients with cardiogenic shock complicating acute myocardial infarction who undergo percutaneous coronary intervention. Am. J. Cardiol. 103, 1073–1077 (2009).

    PubMed  Google Scholar 

  60. Sutton, A. G. et al. Predictors of outcome after percutaneous treatment for cardiogenic shock. Heart 91, 339–344 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sleeper, L. A. et al. A severity scoring system for risk assessment of patients with cardiogenic shock: a report from the SHOCK trial and registry. Am. Heart J. 160, 443–450 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Den Uil, C. A. et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 31, 3032–3039 (2010).

    PubMed  Google Scholar 

  63. Tan L. B. Cardiac pumping capability and prognosis in heart failure. Lancet 328, 1360–1363 (1986).

    Google Scholar 

  64. Tan, L. B & Littler, W. A. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management. Br. Heart J. 64, 121–128 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Finke, R. et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J. Am. Coll. Cardiol. 44, 340–348 (2004).

    Google Scholar 

  66. Mendoza, D. D., Cooper H. A. & Panza, J. A. Cardiac power output predicts mortality across a broad spectrum of patients with acute cardiac disease. Am Heart J 153, 366–370 (2007).

    PubMed  Google Scholar 

  67. Menon, V. & Hochman, J. S. Management of cardiogenic shock complicating acute myocardial infarction. Heart 88, 531–537 (2002).

    PubMed  PubMed Central  Google Scholar 

  68. Bayram, M., De Luca, L., Massie, M. B. & Gheorghiade, M. Reassessment of dobutamine, dopamine and Milrinone in the management of acute heart failure syndromes. Am. J. Cardiol. 96, 47G–58G (2005).

    CAS  PubMed  Google Scholar 

  69. De Backer, D. et al. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 362, 779–789 (2010).

    CAS  PubMed  Google Scholar 

  70. Lahm, T. et al. Medical and surgical treatment of acute right heart failure. J. Am. Coll. Cardiol. 56, 1435–1446 (2010).

    PubMed  Google Scholar 

  71. Jardin, F. & Vieillard-Baron, A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 29, 1426–1434 (2003).

    PubMed  Google Scholar 

  72. George, I. et al. Clinical indication for use and outcomes after inhaled nitric oxide therapy. Ann. Thorac. Surg. 82, 2161–2169 (2006).

    PubMed  Google Scholar 

  73. Vizza, C. D. et al. Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit. Care 5, 355–361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hentschel, T. et al. Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rate model of congestive heart failure. Anesthesiology 106, 124–131 (2007).

    CAS  PubMed  Google Scholar 

  75. Kerbaul, F. et al. Effects of levosimendan versus dobutamine on pressure-load induced right ventricular failure. Crit. Care Med. 34, 2814–2819 (2006).

    CAS  PubMed  Google Scholar 

  76. Lepore, J. J. et al. Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127, 1647–1653 (2005).

    CAS  Google Scholar 

  77. Garot, P., Bendaoud N., Lefèvre, T. & Morice, M. C. Favorable effect of statin therapy on early survival benefit at the time of percutaneous coronary intervention for ST-elevation myocardial infarction and shock. EuroIntevention 6, 350–355 (2010).

    Google Scholar 

  78. Albert, M. A., Danielson, E., Rifai, N. & Ridker, P. K. for the PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation /CRP evaluation (PRINCE): a randomised trial and cohort study. JAMA 286, 64–70 (2001).

    CAS  PubMed  Google Scholar 

  79. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels: Cholesterol and Recurrent Events Trial Investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    CAS  PubMed  Google Scholar 

  80. Hoffmann, R. et al. Effect of statin therapy before Q-wave myocardial infarction on myocardial perfusion. Am. J. Cardiol. 101, 139–143 (2008).

    CAS  PubMed  Google Scholar 

  81. Aronow, H. D. et al. Effect of lipid-lowering therapy on early mortality after acute coronary syndromes: an observational study. Lancet 357, 1063–1068 (2001).,

    CAS  PubMed  Google Scholar 

  82. Strandberg, T. E., Vanhanen, H. & Tikkanen, M. J. Effect of stains on C-reactive protein in patients with coronary disease. Lancet 353, 118–119 (1999).

    CAS  PubMed  Google Scholar 

  83. Stenestrand, U. & Wallentin, L. for the Swedish Register of Cardiac Intensive Care (RIKS-HIA). Early statin treatment following acute myocardial infarction and 1-year survival. JAMA 285, 430–436 (2001).

    CAS  PubMed  Google Scholar 

  84. Heeschen, C. et al. Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation 105, 1446–1452 (2002).

    CAS  PubMed  Google Scholar 

  85. Briel, M. et al. Effects of early treatment with statins on short-term clinical outcomes in acute coronary syndromes: a meta-analysis of randomized controlled trials. JAMA 295, 2046–2056 (2006).

    CAS  PubMed  Google Scholar 

  86. Gwinnutt, C. L., Columb, M. & Harris R. Outcome after cardiac arrest in adults in UK hospitals: effect of the 1997 guidelines. Resuscitation 47, 125–135 (2000).

    CAS  PubMed  Google Scholar 

  87. Polderman, K. H. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intensive Care Med. 30, 556–575 (2004).

    PubMed  Google Scholar 

  88. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

  89. Benson, D. W., Williams, G. R. Jr., Spencer, F. C. & Yates, A. J. The use of hypothermia after cardiac arrest. Anesth. Analg. 38, 423–428 (1959).

    CAS  PubMed  Google Scholar 

  90. Bigelow, W. G., Lindsay, W. K. & Greenwood, W. F. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann. Surg. 132, 849–866 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bernard SA. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    PubMed  Google Scholar 

  92. Nolan, J. P. et al. Therapeutic hypothermia after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation. Circulation 108, 118–121 (2003).

    CAS  PubMed  Google Scholar 

  93. Nolan, J. P., Deakin, C. D., Soar, J., Böttiger, B. W. & Smith, G. European Resuscitation Council Guidelines for Resuscitation 2005. Section 4. Adult advanced life support. Resuscitation 67 (Suppl. I), S39–S86 (2005).

    PubMed  Google Scholar 

  94. Polderman, K. H. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality—Part 2: Practical aspects and side effects. Intensive Care Med. 30, 757–769 (2004).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Westaby researched data for and wrote the article. All authors contributed to the discussion of content and reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Stephen Westaby.

Ethics declarations

Competing interests

S. Westaby is a stockholder/Director of Calon Cardio-Technology. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westaby, S., Kharbanda, R. & Banning, A. Cardiogenic shock in ACS. Part 1: prediction, presentation and medical therapy. Nat Rev Cardiol 9, 158–171 (2012). https://doi.org/10.1038/nrcardio.2011.194

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing