Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deubiquitylating enzymes and drug discovery: emerging opportunities

Key Points

  • The deubiquitylating enzyme (DUB) family contains ~100 proteins that remove the post-translational modification ubiquitin from a variety of substrates.

  • DUBs have key roles in various areas of cell biology of high relevance to pathologies such as autoimmune disorders, chronic inflammation, oncology and neurodegeneration.

  • DUBs are attractive targets for small-molecule drug discovery, as they contain a well-defined active site, and the majority of them have a catalytic cysteine.

  • Oxidative hydrolysis of the active-site cysteine is a challenge for DUB inhibitor screening, as reducing agents are often required to maintain DUB activity but frequently result in high false-positive rates if used at high concentrations.

  • Many of the reported DUB inhibitors have been shown to be rather non-selective in biochemical selectivity profiling assays.

  • Recent advances in screening substrates and technologies, as well as activity-based probes for monitoring target engagement, have facilitated progress in DUB drug discovery.

  • Increased understanding of DUB biology and emerging examples of potent and selective DUB inhibitors suggest that clinical development of DUB inhibitors is on the horizon.

Abstract

More than a decade after a Nobel Prize was awarded for the discovery of the ubiquitin–proteasome system and clinical approval of proteasome and ubiquitin E3 ligase inhibitors, first-generation deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the clinical development of selective DUB inhibitors has been challenging. In this Review, we discuss these issues and highlight recent advances in our understanding of DUB enzymology and biology as well as technological improvements that have contributed to the current interest in DUBs as therapeutic targets in diseases ranging from oncology to neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitylation cascade and the deubiquitylase family of proteins.
Figure 2: Various roles of DUBs in oncology.

Similar content being viewed by others

References

  1. Ciechanover, A. The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem. Soc. Trans. 31, 474–481 (2003).

    CAS  PubMed  Google Scholar 

  2. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79–87 (2005).

    CAS  PubMed  Google Scholar 

  3. Gallastegui, N. & Groll, M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem. Sci. 35, 634–642 (2010).

    CAS  PubMed  Google Scholar 

  4. Finley, D., Chen, X. & Walters, K. J. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77–93 (2016).

    CAS  PubMed  Google Scholar 

  5. Peth, A., Besche, H. C. & Goldberg, A. L. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36, 794–804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Muratani, M. & Tansey, W. P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4, 192–201 (2003).

    CAS  PubMed  Google Scholar 

  7. Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112–121 (2002).

    CAS  PubMed  Google Scholar 

  8. Hicke, L. Protein regulation by monoubiquitin. Nat. Reviews Molecular Cell Biology 2, 195–201 (2001).

    CAS  PubMed  Google Scholar 

  9. Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795–807 (2013). This review highlights how ubiquitylation and related processes control many cellular responses to DNA damage.

    Article  CAS  PubMed  Google Scholar 

  10. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    CAS  PubMed  Google Scholar 

  11. Herhaus, L. & Dikic, I. Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16, 1071–1083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    CAS  PubMed  Google Scholar 

  13. van der Veen, A. G. & Ploegh, H. L. Ubiquitin-like proteins. Annu. Rev. Biochem. 81, 323–357 (2012).

    CAS  PubMed  Google Scholar 

  14. Huang, C. J., Wu, D., Khan, A. F. . & Huo, L. J. DeSUMOylation: an important therapeutic target and protein regulatory event. DNA Cell Biol. 34, 652–660 (2015).

    CAS  PubMed  Google Scholar 

  15. Murali, R., Wiesner, T. & Scolyer, R. A. Tumours associated with BAP1 mutations. Pathology 45, 116–126 (2013).

    CAS  PubMed  Google Scholar 

  16. Oliveira, A. M. & Chou, M. M. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum. Pathol. 45, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  17. Hao, Y. H. et al. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol. Cell 59, 956–969 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, Z. Y. et al. Recurrent gain-of-function USP8 mutations in Cushing's disease. Cell Res. 25, 306–317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reincke, M. et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat. Genet. 47, 31–38 (2015). References 18 and 19 are key publications identifying mutations in USP8 that enhance EGFR signalling and cause Cushing disease.

    CAS  PubMed  Google Scholar 

  20. Homan, C. C. et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am. J. Hum. Genet. 94, 470–478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Murtaza, M., Jolly, L. A., Gecz, J. & Wood, S. A. La FAM fatale: USP9X in development and disease. Cell. Mol. Life Sci. 72, 2075–2089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eichhorn, P. J. et al. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat. Med. 18, 429–435 (2012).

    CAS  PubMed  Google Scholar 

  23. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet. 25, 160–165 (2000).

    CAS  PubMed  Google Scholar 

  24. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221–228 (1994).

    CAS  PubMed  Google Scholar 

  25. McDonell, L. M. et al. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat. Genet. 45, 556–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen, P. & Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143, 686–693 (2010). This is a key perspective highlighting DUBs as attractive drug targets.

    CAS  PubMed  Google Scholar 

  27. Huang, X. & Dixit, V. M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498 (2016). This recent review highlights drug discovery efforts targeting the ubiquitin system, including DUBs.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sacco, J. J., Coulson, J. M., Clague, M. J. & Urbe, S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62, 140–157 (2010).

    CAS  PubMed  Google Scholar 

  29. Wang, L. & Dent, S. Y. Functions of SAGA in develo-pment and disease. Epigenomics 6, 329–339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicholson, B. & Suresh Kumar, K. G. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011).

    CAS  PubMed  Google Scholar 

  31. Cremona, C. A., Sancho, R., Diefenbacher, M. E. & Behrens, A. Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Semin. Cancer Biol. 36, 52–61 (2016).

    CAS  PubMed  Google Scholar 

  32. D'Arcy, P., Wang, X. & Linder, S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147, 32–54 (2015).

    CAS  PubMed  Google Scholar 

  33. Souroullas, G. P. & Sharpless, N. E. Stem cells: Down's syndrome link to ageing. Nature 501, 325–326 (2013).

    CAS  PubMed  Google Scholar 

  34. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013). First report demonstrating that USP7 deubiquitylates and stabilizes FOXP3 in T reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, H. et al. Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis. Blood 117, 3151–3162 (2011).

    CAS  PubMed  Google Scholar 

  36. Savio, M. G. et al. USP9X controls EGFR fate by deubiquitinating the endocytic adaptor Eps15. Curr. Biol. 26, 173–183 (2016).

    CAS  PubMed  Google Scholar 

  37. Richardson, P. G., Hideshima, T. & Anderson, K. C. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 10, 361–369 (2003).

    PubMed  Google Scholar 

  38. Chen, D., Frezza, M., Schmitt, S., Kanwar, J. & Dou, Q. P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets 11, 239–253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    CAS  PubMed  Google Scholar 

  40. Song, Y. et al. Deubiquitylating enzyme Rpn11/POH1/PSMD14 As therapeutic target in multiple myeloma. Blood 128, 4469–4469 (2016).

    Google Scholar 

  41. Wang, B. et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat. Commun. 6, 8704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, H., Buus, R., Clague, M. J. & Urbe, S. Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS ONE 4, e5544 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Kakarougkas, A. et al. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res. 41, 10298–10311 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 24, 3747–3756 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Eletr, Z. M. & Wilkinson, K. D. Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta 1843, 114–128 (2014).

    CAS  PubMed  Google Scholar 

  46. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, N. et al. Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int. J. Mol. Sci. 14, 10749–10760 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med. Oncol. 32, 379 (2015).

    CAS  PubMed  Google Scholar 

  49. Xu, D. et al. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 4, e10510 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Jung, H. et al. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2, e64 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Qiu, X. B. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8, 994–1002 (2006).

    CAS  PubMed  Google Scholar 

  53. Koulich, E., Li, X. & DeMartino, G. N. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 19, 1072–1082 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997).

    CAS  PubMed  Google Scholar 

  55. Mazumdar, T. et al. Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc. Natl Acad. Sci. USA 107, 13854–13859 (2010).

    CAS  PubMed  Google Scholar 

  56. Wang, L. et al. High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biol. 35, 11427–11433 (2014).

    CAS  PubMed  Google Scholar 

  57. Fang, Y. et al. Ubiquitin C-terminal hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochim. Biophys. Acta 1833, 559–572 (2013).

    CAS  PubMed  Google Scholar 

  58. Richardson, P. G. A review of the proteasome inhibitor bortezomib in multiple myeloma. Expert Opin. Pharmacother. 5, 1321–1331 (2004).

    CAS  PubMed  Google Scholar 

  59. Wang, X. et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem. Biol. Drug Design 86, 1036–1048 (2015).

    CAS  Google Scholar 

  60. D'Arcy, P. et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17, 1636–1640 (2011).

    CAS  PubMed  Google Scholar 

  61. Berndtsson, M. et al. Induction of the lysosomal apoptosis pathway by inhibitors of the ubiquitin-proteasome system. Int. J. Cancer 124, 1463–1469 (2009).

    CAS  PubMed  Google Scholar 

  62. Tian, Z. et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123, 706–716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, H.-J. et al. Compositions and methods for JAMM protein inhibition. WO2012158435 (A1) (2012).

  64. Zhou, H.-J., Parlati, F. & Wustrow, D. Methods and compositions for JAMM protease inhibition. WO2013123071 (A1) (2013).

  65. Zhou, H.-J. & Wustrow, D. Compositions and methods for JAMM protein inhibition. WO2014066506 (A2) (2014).

  66. O'Connor, M. J. Targeting the DNA Damage response in cancer. Mol. Cell 60, 547–560 (2015).

    CAS  PubMed  Google Scholar 

  67. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacq, X., Kemp, M., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem. Biophys. 67, 25–43 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Castella, M. et al. FANCI Regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLoS Genet. 11, e1005563 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Nijman, S. M. et al. The Deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    CAS  PubMed  Google Scholar 

  71. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  72. Guervilly, J. H., Renaud, E., Takata, M. & Rosselli, F. USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum. Mol. Genet. 20, 2171–2181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Williams, S. A. et al. USP1 Deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146, 918–930 (2011).

    CAS  PubMed  Google Scholar 

  74. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).

    CAS  PubMed  Google Scholar 

  75. Chen, J. et al. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390–1400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ritorto, M. S. et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5, 4763 (2014). Key publication assessing substrate specificity of 42 DUBs and selectivity profiling of 9 reported DUB inhibitors against a panel of 32 DUBs.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dexheimer, T. S. et al. Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer. J. Med. Chem. 57, 8099–8110 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liang, Q. et al. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol. 10, 298–304 (2014). Identification of the USP1 inhibitor ML323 and demonstration that the compound potentiates cisplatin cytotoxicity in non-small-cell lung cancer and osteosarcoma cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schoenfeld, A. R., Apgar, S., Dolios, G., Wang, R. & Aaronson, S. A. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol. Cell. Biol. 24, 7444–7455 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiltshire, T. D. et al. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J. Biol. Chem. 285, 14565–14571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Burkhart, R. A. et al. Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol. Cancer Res. 11, 901–911 (2013).

    CAS  PubMed  Google Scholar 

  83. Wijnhoven, P. et al. USP4 Auto-Deubiquitylation Promotes Homologous Recombination. Mol. Cell 60, 362–373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McGarry, E. et al. The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-phase. Cancer Res. 76, 2384–2393 (2016).

    CAS  PubMed  Google Scholar 

  85. Wolfsperger, F. et al. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis. 7, e2039 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kapuria, V. et al. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70, 9265–9276 (2010).

    CAS  PubMed  Google Scholar 

  87. Kapuria, V. et al. A novel small molecule deubiquitinase inhibitor blocks Jak2 signaling through Jak2 ubiquitination. Cell Signal 23, 2076–2085 (2011).

    CAS  PubMed  Google Scholar 

  88. Clague, M. J. et al. Deubiquitylases from genes to organism. Physiol. Rev. 93, 1289–1315 (2013).

    CAS  PubMed  Google Scholar 

  89. Prives, C. Signaling to p53: breaking the MDM2 p53 circuit. Cell 95, 5–8 (1998).

    CAS  PubMed  Google Scholar 

  90. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    CAS  PubMed  Google Scholar 

  91. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    CAS  PubMed  Google Scholar 

  92. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    CAS  PubMed  Google Scholar 

  93. Cummins, J. M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689–692 (2004).

    CAS  PubMed  Google Scholar 

  94. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    CAS  PubMed  Google Scholar 

  95. Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lecona, E. et al. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat. Struct. Mol. Biol. 23, 270–277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Colland, F. et al. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286–2295 (2009).

    CAS  PubMed  Google Scholar 

  98. Reverdy, C. et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467–477 (2012).

    CAS  PubMed  Google Scholar 

  99. Chauhan, D. et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fan, Y. H. et al. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 4, e867 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gavory, G. et al. Discovery and characterization of novel, highly potent and selective USP7 inhibitors. Cancer Res. 75 (Suppl. 15), abstr. LB-257 (2015).

    Google Scholar 

  102. Liu, H. et al. The Machado–Joseph disease deubiquitinase ataxin-3 regulates the stability and apoptotic function of p53. PLoS Biol. 14, e2000733 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Cuella-Martin, R. et al. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol. Cell 64, 51–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Popov, N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9, 765–774 (2007).

    CAS  PubMed  Google Scholar 

  105. Diefenbacher, M. E. et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest. 124, 3407–3418 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Biju, M. et al. Discovery of potent and selective small molecule USP20 inhibitors. Presented at Ubiquitin Drug Discovery and Diagnostics Conference, Philadelphia, 2012.

  107. Mizuno, E. et al. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol. Biol. Cell 16, 5163–5174 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Niendorf, S. et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol. Cell. Biol. 27, 5029–5039 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yewale, C., Baradia, D., Vhora, I., Patil, S. & Misra, A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34, 8690–8707 (2013).

    CAS  PubMed  Google Scholar 

  110. Colombo, M. et al. Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. ChemMedChem 5, 552–558 (2010).

    CAS  PubMed  Google Scholar 

  111. Byun, S. et al. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin. Cancer Res. 19, 3894–3904 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Inui, M. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 13, 1368–1375 (2011).

    CAS  PubMed  Google Scholar 

  113. Wilkinson, K. D. et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673 (1989).

    CAS  PubMed  Google Scholar 

  114. Day, I. N. & Thompson, R. J. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Progress Neurobiol. 90, 327–362 (2010).

    CAS  Google Scholar 

  115. Hurst-Kennedy, J., Chin, L. S. & Li, L. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis. Biochem. Res. Int. 2012, 123706 (2012).

    PubMed  PubMed Central  Google Scholar 

  116. Hussain, S. et al. The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia 24, 1641–1655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, H. J. et al. Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene 28, 117–127 (2009).

    CAS  PubMed  Google Scholar 

  118. Jang, M. J., Baek, S. H. & Kim, J. H. UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. 302, 128–135 (2011).

    CAS  PubMed  Google Scholar 

  119. Gu, Y. Y. et al. The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36, 8379–8387 (2015).

    CAS  PubMed  Google Scholar 

  120. Liu, Y. et al. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837–846 (2003).

    CAS  PubMed  Google Scholar 

  121. Mermerian, A. H., Case, A., Stein, R. L. & Cuny, G. D. Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors. Bioorg. Med. Chem. Lett. 17, 3729–3732 (2007).

    CAS  PubMed  Google Scholar 

  122. Davies, C. W. et al. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorg. Med. Chem. Lett. 22, 3900–3904 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jones, A. et al. Novel Compounds. WO2016046530 (2016). First patent from Mission Therapeutics describing its DUB inhibitors.

  124. Kemp, M., Stockley, M. & Jones, A. Cyanopyrrolidines as DUB inhibitors for the treatment of cancers. WO2017009650 (2017).

  125. Hussain, S., Bedekovics, T., Chesi, M., Bergsagel, P. L. & Galardy, P. J. UCHL1 is a biomarker of aggressive multiple myeloma required for disease progression. Oncotarget 6, 40704–40718 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Schrecengost, R. S. et al. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression. Cancer Res. 74, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  127. Liu, Y. L., Yang, Y. M., Xu, H. & Dong, X. S. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J. Surg. Oncol. 103, 283–289 (2011).

    CAS  PubMed  Google Scholar 

  128. Zhang, Y. et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J. Cancer Res. Clin. Oncol. 137, 1245–1253 (2011).

    CAS  PubMed  Google Scholar 

  129. Li, J., Wang, Z. & Li, Y. USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome in human esophageal squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 138, 1291–1297 (2012).

    CAS  PubMed  Google Scholar 

  130. Piao, S. et al. USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma. PLoS ONE 7, e42540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, J. et al. Identification of the E3 deubiquitinase ubiquitin-specific peptidase 21 (USP21) as a positive regulator of the transcription factor GATA3. J. Biol. Chem. 288, 9373–9382 (2013). This publication demonstrates that USP21 deubiquitylates and stabilizes the transcription factor GATA3 in T reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, Y. et al. USP21 prevents the generation of T-helper-1-like Treg cells. Nat. Commun. 7, 13559 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Facciabene, A., Motz, G. T. & Coukos, G. T-Regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ross, C. A. & Pickart, C. M. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol. 14, 703–711 (2004).

    CAS  PubMed  Google Scholar 

  135. Todi, S. V. & Paulson, H. L. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 34, 370–382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ristic, G., Tsou, W. L. & Todi, S. V. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Frontiers Mol. Neurosci. 7, 72 (2014).

    Google Scholar 

  137. Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ross, J. M., Olson, L. & Coppotelli, G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int. J. Mol. Sci. 16, 19458–19476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Martin, I., Dawson, V. L. & Dawson, T. M. Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genom. Hum. Genet. 12, 301–325 (2011).

    CAS  Google Scholar 

  140. Hauser, D. N. & Hastings, T. G. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiol. Dis. 51, 35–42 (2013).

    CAS  PubMed  Google Scholar 

  141. Narendra, D. P. & Youle, R. J. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid. Redox Signal. 14, 1929–1938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014). This key publication demonstrates that USP30 antagonizes mitophagy driven by the ubiquitin ligase parkin and protein kinase PINK1.

    CAS  PubMed  Google Scholar 

  143. Durcan, T. M. & Fon, E. A. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nakamura, N. & Hirose, S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol. Biol. Cell 19, 1903–1911 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yue, W. et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482–496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jones, A., Kemp, M., Stockley, M., Gibson, K. R. & Whitlock, G. A. Cyano-pyrrolidine compounds as USP30 inhibitors. WO2016156816 (2016).

  148. Durcan, T. M. et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33, 2473–2491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Alexopoulou, Z. et al. Deubiquitinase Usp8 regulates alpha-synuclein clearance and modifies its toxicity in Lewy body disease. Proc. Natl Acad. Sci. USA 113, E4688–E4697 (2016).

    CAS  PubMed  Google Scholar 

  150. Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014).

    CAS  PubMed  Google Scholar 

  151. Durcan, T. M., Kontogiannea, M., Bedard, N., Wing, S. S. & Fon, E. A. Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J. Biol. Chem. 287, 531–541 (2012).

    CAS  PubMed  Google Scholar 

  152. Guterman, A. & Glickman, M. H. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr. Protein Peptide Sci. 5, 201–211 (2004).

    CAS  Google Scholar 

  153. Finley, D., Gahman, T. C., King, R. W., Lee, B. H. & Lee, M. J. Tricyclic proteasome activity enhancing compounds. WO 2012012712 (2012).

  154. Chambers, R. J., Foley, M. & Tait, B. Proteasome activity modulating compounds. WO 2013112651 (2013).

  155. Chambers, R. J., Foley, M. & Tait, B. Proteasome activity enhancing compounds. WO2013112699 (2013). References 154 and 155 are Proteostasis Therapeutics patents that describe USP14 inhibitors.

  156. Crimmins, S. et al. Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. J. Neurosci. 26, 11423–11431 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ortuno, D., Carlisle, H. J. & Miller, S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases? F1000Res. 5, 137 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Joo, H. Y. et al. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449, 1068–1072 (2007).

    CAS  PubMed  Google Scholar 

  159. Adorno, M. et al. Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature 501, 380–384 (2013). This work demonstrates that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu, J. C., Dawson, V. L. & Dawson, T. M. Usp16: key controller of stem cells in Down syndrome. EMBO J. 32, 2788–2789 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hu, H. & Sun, S. C. Ubiquitin signaling in immune responses. Cell Res. 26, 457–483 (2016). A recent review that describes how ubiquitylation regulates immune signalling and discusses of roles of many DUBs.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, X. & Chen, Z. J. The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunology 12, 35–48 (2011).

    PubMed  Google Scholar 

  163. Adhikari, A., Xu, M. & Chen, Z. J. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26, 3214–3226 (2007).

    CAS  PubMed  Google Scholar 

  164. Tokunaga, F. Linear ubiquitination-mediated NF-kappaB regulation and its related disorders. J. Biochem. 154, 313–323 (2013).

    CAS  PubMed  Google Scholar 

  165. Harhaj, E. W. & Dixit, V. M. Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res. 21, 22–39 (2011).

    CAS  PubMed  Google Scholar 

  166. Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014).

    CAS  PubMed  Google Scholar 

  167. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004). This publication demonstrates that phosphorylation of A20 promotes cleavage of K63-linked polyubiquitin chains.

    CAS  PubMed  Google Scholar 

  168. Skaug, B. et al. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell 44, 559–571 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wertz, I. E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370–375 (2015).

    CAS  PubMed  Google Scholar 

  170. Zhang, M. et al. Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 283, 18621–18626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Friedman, C. S. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Fiil, B. K. & Gyrd-Hansen, M. Met1-linked ubiquitination in immune signalling. FEBS J. 281, 4337–4350 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Iwai, K., Fujita, H. & Sasaki, Y. Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15, 503–508 (2014).

    CAS  PubMed  Google Scholar 

  174. MacDuff, D. A. et al. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife https://dx.doi.org/10.7554/eLife.04494.002 (2015).

  175. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  176. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471, 637–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tokunaga, F. et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    CAS  PubMed  Google Scholar 

  178. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11, 123–132 (2009).

    CAS  PubMed  Google Scholar 

  179. Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nature Immunol. 13, 1178–1186 (2012).

    CAS  Google Scholar 

  181. Keusekotten, K. et al. OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell 153, 1312–1326 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013). Together with reference 181, this is a key publication that identifies OTULIN as the DUB that removes linear ubiquitin chains.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Damgaard, R. B. et al. The Deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230.e1220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Honke, N., Shaabani, N., Zhang, D. E., Hardt, C. & Lang, K. S. Multiple functions of USP18. Cell Death Dis. 7, e2444 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Rioux, J. D. & Abbas, A. K. Paths to understanding the genetic basis of autoimmune disease. Nature 435, 584–589 (2005).

    CAS  PubMed  Google Scholar 

  186. Walsh, K. P. & Mills, K. H. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 34, 521–530 (2013).

    CAS  PubMed  Google Scholar 

  187. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    CAS  Google Scholar 

  188. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V. K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang, J. et al. Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORgammat. J. Immunol. 194, 4094–4097 (2015).

    CAS  PubMed  Google Scholar 

  190. Okada, K. et al. Vialinin A is a ubiquitin-specific peptidase inhibitor. Bioorg. Med. Chem. Lett. 23, 4328–4331 (2013).

    CAS  PubMed  Google Scholar 

  191. Jin, J. et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nature Immunol. 17, 259–268 (2016).

    CAS  Google Scholar 

  192. Liu, X. et al. USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J. Exp. Med. 210, 1575–1590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Hu, H. et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J. Exp. Med. 213, 399–414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, H. et al. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2, a002279 (2010).

    PubMed  PubMed Central  Google Scholar 

  195. Damsker, J. M., Hansen, A. M. & Caspi, R. R. Th1 and Th17 cells: adversaries and collaborators. Ann. NY Acad. Sci. 1183, 211–221 (2010).

    CAS  PubMed  Google Scholar 

  196. Pan, L. et al. Deubiquitination and stabilization of T-bet by USP10. Biochem. Biophys. Res. Commun. 449, 289–294 (2014).

    CAS  PubMed  Google Scholar 

  197. Bailey-Elkin, B. A., van Kasteren, P. B., Snijder, E. J., Kikkert, M. & Mark, B. L. Viral OTU deubiquitinases: a structural and functional comparison. PLoS Pathog. 10, e1003894 (2014).

    PubMed  PubMed Central  Google Scholar 

  198. Sun, L. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE 7, e30802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ratia, K. et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl Acad. Sci. USA 105, 16119–16124 (2008).

    CAS  PubMed  Google Scholar 

  200. Bailey-Elkin, B. A. et al. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J. Biol. Chem. 289, 34667–34682 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Lei, J. et al. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features. Antiviral Res. 109, 72–82 (2014).

    CAS  PubMed  Google Scholar 

  202. Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Pruneda, J. N. et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Artavanis-Tsakonas, K. et al. Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol. Microbiol. 61, 1187–1195 (2006).

    CAS  PubMed  Google Scholar 

  205. Frickel, E. M. et al. Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cell. Microbiol. 9, 1601–1610 (2007).

    CAS  PubMed  Google Scholar 

  206. Artavanis-Tsakonas, K. et al. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. J. Biol. Chem. 285, 6857–6866 (2010).

    CAS  PubMed  Google Scholar 

  207. Wrigley, J. D. et al. Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem. Biophys. 60, 99–111 (2011).

    CAS  PubMed  Google Scholar 

  208. Sahtoe, D. D. & Sixma, T. K. Layers of DUB regulation. Trends Biochem. Sci. 40, 456–467 (2015). This review discusses the extent and variety of allosteric regulation modes of DUB catalytic activity.

    CAS  PubMed  Google Scholar 

  209. Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017). A very recent and comprehensive review that describes DUB substrate specificity and regulation of catalytic activity.

    CAS  PubMed  Google Scholar 

  210. Kemp, M. Recent advances in the discovery of deubiquitinating enzyme inhibitors. Progress Med. Chem. 55, 149–192 (2016).

    Google Scholar 

  211. Kathman, S. G., Xu, Z. & Statsyuk, A. V. A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases. J. Med. Chem. 57, 4969–4974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Donato, N. J. et al. Deubiquitinase inhibitors and methods for use of the same. WO2015054555 (2015).

  213. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  214. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl Acad. Sci. USA 77, 1783–1786 (1980).

    CAS  PubMed  Google Scholar 

  215. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    CAS  PubMed  Google Scholar 

  216. Faesen, A. C. et al. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol. Cell 44, 147–159 (2011).

    CAS  PubMed  Google Scholar 

  217. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Meyer, H. & Weihl, C. C. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci. 127, 3877–3883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kato, J. Y. & Yoneda-Kato, N. Mammalian COP9 signalosome. Genes Cells 14, 1209–1225 (2009).

    CAS  PubMed  Google Scholar 

  220. Sahtoe, D. D., van Dijk, W. J., Ekkebus, R., Ovaa, H. & Sixma, T. K. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat. Commun. 7, 10292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Ventii, K. H. & Wilkinson, K. D. Protein partners of deubiquitinating enzymes. Biochem. J. 414, 161–175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. D'Andrea, A. Inhibitors of USP1 deubiquitinating enzyme complex. US2008167229 (2008).

  223. Guedat, P. et al. Novel tetracyclic inhibitors of cysteine proteases, the pharmaceutical compositions thereof and their therapeutic applications. US2008103149 (2008).

  224. Colland, F. & Gourdel, M. E. Selective and reversible inhibitors of ubiquitin specific protease 7. WO2013030218 (2013).

  225. Dang, L. C., Melandri, F. D. & Stein, R. L. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37, 1868–1879 (1998).

    CAS  PubMed  Google Scholar 

  226. de Jong, A. et al. Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. Chembiochem 13, 2251–2258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. McGouran, J. F. et al. Fluorescence-based active site probes for profiling deubiquitinating enzymes. Org. Biomol. Chem. 10, 3379–3383 (2012).

    CAS  PubMed  Google Scholar 

  228. Orcutt, S. J., Wu, J., Eddins, M. J., Leach, C. A. & Strickler, J. E. Bioluminescence assay platform for selective and sensitive detection of Ub/Ubl proteases. Biochim. Biophys. Acta 1823, 2079–2086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Leach, C. A., Strickler, J. E. & Eddins, M. J. Methods of screening for inhibitors of enzymes. WO2013043970 (2013).

  230. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012). A landmark review of the broad scope of ubiquitin modifications, illustrating the large diversity of substrates handled by DUBs.

    CAS  PubMed  Google Scholar 

  231. Hospenthal, M. K., Mevissen, T. E. & Komander, D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat. Protoc. 10, 349–361 (2015).

    PubMed  PubMed Central  Google Scholar 

  232. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009). This work describes the extensive landscape of protein–protein interactions engaged by DUBs.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Harrigan, J. & Jacq, X. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Methods Mol. Biol. 1449, 395–410 (2016). A recent review of the utility and benefits of activity probes to monitor DUB target engagement in cells and tissues.

    CAS  PubMed  Google Scholar 

  234. Hewings, D. S., Flygare, J. A., Bogyo, M. & Wertz, I. E. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J. 284, 1555–1576 (2017).

    CAS  PubMed  Google Scholar 

  235. Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Galardy, P., Ploegh, H. L. & Ovaa, H. Mechanism-based proteomics tools based on ubiquitin and ubiquitin-like proteins: crystallography, activity profiling, and protease identification. Methods Enzymol. 399, 120–131 (2005).

    CAS  PubMed  Google Scholar 

  237. El Oualid, F. et al. Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew. Chem. Int. Ed. 49, 10149–10153 (2010).

    CAS  Google Scholar 

  238. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412 (2011). Detailed analysis of DUB activity using ubiquitin-based activity probes and characterization of the selectivity of the DUB inhibitors PR-619 and P2077.

    CAS  PubMed  Google Scholar 

  240. Wang, X. et al. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Mol. Pharmacol. 85, 932–945 (2014).

    PubMed  Google Scholar 

  241. Chen, Y. et al. Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Dig. Dis. Sci. 57, 2310–2317 (2012).

    CAS  PubMed  Google Scholar 

  242. Gray, D. A. et al. Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene 10, 2179–2183 (1995).

    CAS  PubMed  Google Scholar 

  243. Zhang, L. et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat. Cell Biol. 14, 717–726 (2012).

    CAS  PubMed  Google Scholar 

  244. Heo, M. J. et al. microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget 5, 2792–2806 (2014).

    PubMed  PubMed Central  Google Scholar 

  245. Bayraktar, S. et al. USP-11 as a predictive and prognostic factor following neoadjuvant therapy in women with breast cancer. Cancer J. 19, 10–17 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    PubMed  PubMed Central  Google Scholar 

  247. Ma, M. & Yu, N. Ubiquitin-specific protease 7 expression is a prognostic factor in epithelial ovarian cancer and correlates with lymph node metastasis. Onco Targets Ther. 9, 1559–1569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Masuya, D. et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol. 208, 724–732 (2006).

    CAS  PubMed  Google Scholar 

  249. Zhao, G. Y. et al. USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol. 36, 1721–1729 (2015).

    CAS  PubMed  Google Scholar 

  250. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2017).

    CAS  PubMed  Google Scholar 

  251. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    PubMed  PubMed Central  Google Scholar 

  252. Zheng, S. et al. Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Lett. 359, 36–46 (2015).

    CAS  PubMed  Google Scholar 

  253. Akishima-Fukasawa, Y. et al. Significance of PGP9.5 expression in cancer-associated fibroblasts for prognosis of colorectal carcinoma. Am. J. Clin. Pathol. 134, 71–79 (2010).

    CAS  PubMed  Google Scholar 

  254. Ma, Y. et al. Proteomic profiling of proteins associated with lymph node metastasis in colorectal cancer. J. Cell. Biochem. 110, 1512–1519 (2010).

    CAS  PubMed  Google Scholar 

  255. Goto, Y. et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1alpha. Nat. Commun. 6, 6153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Gunia, S. et al. Protein gene product 9.5 is diagnostically helpful in delineating high-grade renal cell cancer involving the renal medullary/sinus region from invasive urothelial cell carcinoma of the renal pelvis. Hum. Pathol. 44, 712–717 (2013).

    CAS  PubMed  Google Scholar 

  257. Otsuki, T. et al. Expression of protein gene product 9.5 (PGP9.5)/ubiquitin-C-terminal hydrolase 1 (UCHL-1) in human myeloma cells. Br. J. Haematol. 127, 292–298 (2004).

    CAS  PubMed  Google Scholar 

  258. Hibi, K. et al. PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am. J. Pathol. 155, 711–715 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Hu, J. et al. Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung cancer 77, 593–599 (2012).

    PubMed  Google Scholar 

  260. Liang, J. X. et al. Ubiquitin specific protease 22-induced autophagy is correlated with poor prognosis of pancreatic cancer. Oncol. Rep. 32, 2726–2734 (2014).

    CAS  PubMed  Google Scholar 

  261. Cunningham, C. N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17, 160–169 (2015).

    CAS  PubMed  Google Scholar 

  262. Wilson, S. M. et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420–425 (2002).

    CAS  PubMed  Google Scholar 

  263. Ceriani, M., Amigoni, L., D'Aloia, A., Berruti, G. & Martegani, E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp. Cell Res. 333, 49–59 (2015).

    CAS  PubMed  Google Scholar 

  264. Daviet, L. & Colland, F. Targeting ubiquitin specific proteases for drug discovery. Biochimie 90, 270–283 (2008).

    CAS  PubMed  Google Scholar 

  265. Bruzzone, F., Vallarino, M., Berruti, G. & Angelini, C. Expression of the deubiquitinating enzyme mUBPy in the mouse brain. Brain Res. 1195, 56–66 (2008).

    CAS  PubMed  Google Scholar 

  266. Yang, W. et al. The histone H2A deubiquitinase Usp16 regulates embryonic stem cell gene expression and lineage commitment. Nat. Commun. 5, 3818 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Ovaa, H. et al. Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc. Natl Acad. Sci. USA 101, 2253–2258 (2004).

    CAS  PubMed  Google Scholar 

  268. Liu, L. Q. et al. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol. Cell. Biol. 19, 3029–3038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Malakhova, O. A. et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25, 2358–2367 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Zhong, B. et al. Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci. Signal 6, ra35 (2013).

    PubMed  PubMed Central  Google Scholar 

  271. Lin, D. et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proc. Natl Acad. Sci. USA 112, 11324–11329 (2015).

    CAS  PubMed  Google Scholar 

  272. Ren, Y. et al. The Type I Interferon-IRF7 Axis Mediates Transcriptional Expression of Usp25 Gene. J. Biol. Chem. 291, 13206–13215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nat. Rev. Immunology 5, 941–952 (2005).

    CAS  PubMed  Google Scholar 

  274. Wertz, I. & Dixit, V. A20—a bipartite ubiquitin editing enzyme with immunoregulatory potential. Adv. Exp. Med. Biol. 809, 1–12 (2014).

    PubMed  Google Scholar 

  275. Wang, L. et al. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J. Virol. 87, 4507–4515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Fan, Y. H. et al. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death Differ. 18, 1547–1560 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Han, L. et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor gammat (RORgammat) in Th17 cells. J. Biol. Chem. 289, 25546–25555 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Ni, Y. et al. The deubiquitinase USP17 regulates the stability and nuclear function of IL-33. Int. J. Mol. Sci. 16, 27956–27966 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Lim, K. H., Ramakrishna, S. & Baek, K. H. Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. Cytokine Growth Factor Rev. 24, 427–431 (2013).

    CAS  PubMed  Google Scholar 

  280. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Hellerbrand, C. et al. Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28, 21–27 (2007).

    CAS  PubMed  Google Scholar 

  283. Massoumi, R. et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J. Exp. Med. 206, 221–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Ye, Y. et al. TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NF-kappaB. Oncogene 29, 3619–3629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Alwan, H. A. & van Leeuwen, J. E. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J. Biol. Chem. 282, 1658–1669 (2007).

    CAS  PubMed  Google Scholar 

  286. Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. O'Shea, S. J. et al. A population-based analysis of germline BAP1 mutations in melanoma. Hum. Mol. Genet. 26, 717–728 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Testa, J. R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Popova, T. et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am. J. Hum. Genet. 92, 974–980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Li, Z., Wang, D., Messing, E. M. & Wu, G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep. 6, 373–378 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Malakhov, M. P., Malakhova, O. A., Kim, K. I., Ritchie, K. J. & Zhang, D. E. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277, 9976–9981 (2002).

    CAS  PubMed  Google Scholar 

  292. Zhong, H. et al. Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling. PLoS ONE 8, e80976 (2013).

    PubMed  PubMed Central  Google Scholar 

  293. Colleran, A. et al. Deubiquitination of NF-kappaB by ubiquitin-specific protease-7 promotes transcription. Proc. Natl Acad. Sci. USA 110, 618–623 (2013).

    CAS  PubMed  Google Scholar 

  294. Zhou, F. et al. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J. Biol. Chem. 287, 11002–11010 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Chen, R. et al. The ubiquitin-specific protease 17 is involved in virus-triggered type I IFN signaling. Cell Res. 20, 802–811 (2010).

    CAS  PubMed  Google Scholar 

  296. Wang, X. et al. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Scientif. Rep. 6, 26979 (2016).

    CAS  Google Scholar 

  297. Maloney, D. J. et al. Inhibitors of the USP1/UAF1 deubiquitinase complex and uses thereof. WO2014105952 (A2) (2014).

  298. Weinstock, J. et al. Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. Acs Med. Chem. Lett. 3, 789–792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Foley, M., Tait, B. & Cullen, M. Proteostasis regulators. WO2012154967 (A1) (2012).

  300. Finley, D., King, R. W., Lee, B. H., Lee, M. J. & Gahman, T. C. Compositions and methods for enhancing proteasome activity. WO2011094545 (A2) (2011).

  301. Davis, M. I. et al. Small Molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J. Biol. Chem. 291, 24628–24640 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Liu, J. et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nature Immunol. 13, 1110–1117 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Dry for extensive editing and expert advice, and other members of the S.P.J. academic laboratory for helpful discussions and advice. The authors thank L. Greger for the generation of the phylogenic tree. Research in the S.P.J. laboratory is funded by the Cancer Research UK (CRUK) Program Grant C6/A18796 and a Wellcome Trust Investigator Award (206388/Z/17/Z), and institute core infrastructure funding is provided by the CRUK (C6946/A24843) and the Wellcome Trust (WT203144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Jackson.

Ethics declarations

Competing interests

S.P.J. is part-time employed by Mission Therapeutics, Cambridge, UK, owns shares and is a director of the company. J.A.H. is a full-time employee of Mission Therapeutics. N.M.M. and X.J. own shares in Mission Therapeutics.

Related links

PowerPoint slides

Glossary

Ubiquitin

A small protein that is conjugated to other proteins (including itself) as a post-translational modification, often to control cellular signalling or degradation of the modified protein.

Ubiquitin-like proteins

(UBLs). Proteins such as small ubiquitin-like modifier (SUMO) or interferon-stimulated gene 15 (ISG15) that adopt a β-grasp fold, which is characteristic of ubiquitin and related proteins.

Proteasome

A protein complex that recognizes and degrades polyubiquitylated proteins. The 19S regulatory subunit contains ATPase- and ubiquitin-binding sites, and the 20S catalytic core contains proteases.

Deubiquitylating enzymes

(DUBs). Proteins that remove ubiquitin from substrate proteins or cleave ubiquitin precursors.

Tumour suppressor

A type of protein that normally restricts the proliferation or invasive properties of normal cells. Mutations or loss-of-expression of tumour suppressors can lead to cancer progression.

Oncogene

A type of protein that normally controls growth, differentiation or survival of cells but whose mutation or expression at abnormally high levels promotes tumorigenesis.

Isopeptidase

A type of enzyme that hydrolyses amide bonds that occur outside of the main chain in a polypeptide chain.

Regulatory T cells

(Treg cells). A subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens and prevent autoimmune disease.

Mitochondria

Cellular organelles that produce ATP through oxidative phosphorylation.

Mitophagy

The process of eliminating damaged and aged mitochondria via sequestration and hydrolytic degradation by the lysosome.

ax J

A hypomorphic allele of USP14. The ataxia mutation (axJ) is a recessive neurological mutation that results in reduced growth, ataxia and hindlimb muscle wasting in mice.

Cytokines

Members of a class of immunoregulatory proteins (interleukins or interferons) that are secreted by cells, especially cells of the immune system.

T helper cells

(TH cells). Activated T cells linked to defence against various types of pathogens, which are commonly defined by their production of particular cytokines. The best-characterized effector T cell subsets include TH1, TH2 and TH17 cells.

Allosteric

Binding to a site other than the active site of the enzyme, resulting in modulation of enzymatic activity.

Activity-based probes

(ABPs). Tools that incorporate elements for targeting, modification and/or detection of labelled proteins, enabling assessment of enzymatic activity and inhibition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrigan, J., Jacq, X., Martin, N. et al. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17, 57–78 (2018). https://doi.org/10.1038/nrd.2017.152

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd.2017.152

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer