Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond

Key Points

  • Nitric oxide (NO) is a key mediator of neural and haemodynamic effects. NO diffuses into vascular smooth muscle cells, stimulating the production of cGMP and leading to vasodilatation.

  • The effects of NO/cGMP are limited by phosphodiesterase 5 (PDE5), which inactivates cGMP and is present in the smooth muscle of the vasculature and in platelets.

  • In 1986, novel pyrazolopyrimidines were identified as highly potent inhibitors of PDE5 at Pfizer laboratories as part of a programme seeking drugs for angina pectoris. A compound initially named UK-92,480, but now better known as sildenafil, was demonstrated to have very good potency and excellent selectivity over PDEs1–4.

  • During the 1980s, advances in the recognition and treatment of erectile dysfunction (ED), led to the use of drugs that function by modulating cAMP levels. However, drawbacks included the invasive nature of the treatment, induction of an 'artificial' erection and numerous side effects.

  • In the early 1990s sildenafil was looking less promising as an angina therapeutic. At the same time, experimental and clinical studies provided evidence that PDE5 inhibition might be an attractive therapeutic approach to ED, as NO is a key regulator of vascular tone in the corpus cavernosum.

  • By 1997, 21 separate clinical trials had demonstrated the efficacy of sildenafil in various patient populations. The FDA approved VIAGRA for the treatment of ED in March 1998. European approval followed in September 1998.

  • Pulmonary hypertension is a devastating disease of different origins of which the idiopathic form of pulmonary arterial hypertension (iPAH) is the best characterized. In the early 1990s, intravenous prostacyclin was introduced as the first specific treatment for iPAH; however, this therapy is hampered by various drawbacks.

  • Adaptation of perfusion distribution to well-ventilated areas of the lung is regulated by local NO/ cGMP signalling. PDE5 is abundantly expressed in lung tissue and is therefore an ideal target for the treatment of disorders in the pulmonary circulation.

  • Between 1998–2001, growing evidence demonstrated the efficacy of sildenafil in the treatment of pulmonary vascular disorders and led to the design of a large randomized, controlled, multinational trial, the SUPER-1 study. Sildenafil was approved by the FDA and the EMEA in 2005 for the treatment of PAH.

  • New potential indications currently under investigation include the treatment of pulmonary hypertension associated with underlying lung diseases (for example, chronic obstructive pulmonary disease and fibrosis), chronic thromboembolic pulmonary hypertension, Raynaud's phenomenon, right- and left-ventricular hypertrophy, and cerebrovascular diseases.

Abstract

In less than 20 years, the first selective type 5 phosphodiesterase inhibitor, sildenafil, has evolved from a potential anti-angina drug to an on-demand oral treatment for erectile dysfunction (Viagra), and more recently to a new orally active treatment for pulmonary hypertension (Revatio). Here we describe the key milestones in the development of sildenafil for these diverse medical conditions, discuss the advances in science and clinical medicine that have accompanied this journey and consider possible future indications for this versatile drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NO/cGMP signalling pathway.
Figure 2: Working model of PDE5.
Figure 3: Comparison of the structures of cGMP, sildenafil and other PDE5 inhibitors.
Figure 4: Structure of the PDE5 catalytic domain.
Figure 5: Adaptation of blood flow to ventilation in the pulmonary circulation.

Similar content being viewed by others

References

  1. Marsh, N. & Marsh, A. A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin. Exp. Pharmacol. Physiol. 27, 313–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991). An excellent review of the physiology and pathophysiology of nitric oxide and the pharmacological implications of this important molecule.

    CAS  PubMed  Google Scholar 

  3. Pfeifer, A. et al. Structure and function of cGMP-dependent protein kinases. Rev. Physiol. Biochem. Pharmacol. 135, 105–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lucas, K. A. et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52, 375–414 (2000).

    CAS  PubMed  Google Scholar 

  5. Parker, J. D. & Parker, J. O. Nitrate therapy for stable angina pectoris. N. Engl. J. Med. 338, 520–531 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Corbin, J. D. & Francis, S. H. Cyclic GMP phosphodiesterase-5: target of sildenafil. J. Biol. Chem. 274, 13729–13732 (1999). An informative review about sildenafil and its target, PDE5, from two scientists that contributed significantly to this research area.

    Article  CAS  PubMed  Google Scholar 

  7. Terrett, N. K., Bell, A. S., Brown, D. & Ellis, P. Sildenafil (VIAGRA(TM)), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. Lett. 6, 1819–1824 (1996).

    Article  Google Scholar 

  8. Wallis, R. M., Corbin, J. D., Francis, S. H. & Ellis, P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol. 83, 3C–12C (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, S. F. Science, art and drug discovery: a personal perspective. Clin. Sci. (Lond) 99, 255–260 (2000).

    Article  CAS  Google Scholar 

  10. Walker, D. K. et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 29, 297–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ballard, S. A. et al. Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J. Urol. 159, 2164–2171 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Webb, D. J., Freestone, S., Allen, M. J. & Muirhead, G. J. Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am. J. Cardiol. 83, 21C–28C (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ignarro, L. J. et al. Nitric oxide and cyclic GMP for-mation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun. 170, 843–850 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Bush, P. A., Aronson, W. J., Buga, G. M., Rajfer, J. & Ignarro, L. J. Nitric oxide is a potent relaxant of human and rabbit corpus cavernosum. J. Urol. 147, 1650–1655 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Azadzoi, K. M. et al. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J. Urol. 147, 220–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Boolell, M. et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res. 8, 47–52 (1996). First report from a Pfizer research group indicating that sildenafil holds promise as a new effective oral treatment for penile erectile dysfunction.

    CAS  PubMed  Google Scholar 

  17. Rosen, R. C., Cappelleri, J. C. & Gendrano, N., III The International Index of Erectile Function (IIEF): a state-of-the-science review. Int. J. Impot. Res. 14, 226–244 (2002). Important review of the International Index of Erectile Function (IIEF), the current 'gold standard' measure for efficacy assessment in clinical trials of erectile dysfunction.

    Article  CAS  PubMed  Google Scholar 

  18. Eardley, I., Ellis, P., Boolell, M. & Wulff, M. Onset and duration of action of sildenafil for the treatment of erectile dysfunction. Br. J. Clin. Pharmacol. 53 (Suppl. 1), 61S–65S (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstein, I. et al. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N. Engl. J. Med. 338, 1397–1404 (1998). First publication of the results of two sequential double-blind studies proving the efficacy and safety of sildenafil, administered as needed in men with erectile dysfunction.

    Article  CAS  PubMed  Google Scholar 

  20. Montorsi, F. et al. Efficacy and safety of fixed-dose oral sildenafil in the treatment of erectile dysfunction of various etiologies. Urology 53, 1011–1018 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Dinsmore, W. W. et al. Sildenafil citrate (Viagra) in erectile dysfunction: near normalization in men with broad-spectrum erectile dysfunction compared with age-matched healthy control subjects. Urology 53, 800–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Stuckey, B. G. et al. Sildenafil citrate for treatment of erectile dysfunction in men with type 1 diabetes: results of a randomized controlled trial. Diabetes Care 26, 279–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Rendell, M. S., Rajfer, J., Wicker, P. A. & Smith, M. D. Sildenafil for treatment of erectile dysfunction in men with diabetes: a randomized controlled trial. Sildenafil Diabetes Study Group. JAMA 281, 421–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Olsson, A. M. & Persson, C. A. Efficacy and safety of sildenafil citrate for the treatment of erectile dysfunction in men with cardiovascular disease. Int. J. Clin. Pract. 55, 171–176 (2001).

    CAS  PubMed  Google Scholar 

  25. Fowler, C. J. et al. A double blind, randomised study of sildenafil citrate for erectile dysfunction in men with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 700–705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Derry, F. A. et al. Efficacy and safety of oral sildenafil (Viagra) in men with erectile dysfunction caused by spinal cord injury. Neurology 51, 1629–1633 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Ogura, K. et al. Role of sildenafil citrate in treatment of erectile dysfunction after radical retropubic prostatectomy. Int. J. Urol. 11, 159–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Morales, A., Gingell, C., Collins, M., Wicker, P. A. & Osterloh, I. H. Clinical safety of oral sildenafil citrate (VIAGRA) in the treatment of erectile dysfunction. Int. J. Impot. Res. 10, 69–73 (1998). Very informative data analysis on safety and tolerability of sildenafil in the treatment of erectile dysfunction from a series of double-blind, placebo-controlled studies and from ten open-label extension studies.

    Article  CAS  PubMed  Google Scholar 

  29. Gbekor, E., Bethell, S., Fawcett, L., Mount, N. & Phillips, S. Phosphodiesterase 5 inhibitor profiles against all human phosphodiesterase families: Implications for use as pharmacological tools. J. Urol. 167 (Suppl.), S246 (2002).

    Google Scholar 

  30. Laties, A. & Zrenner, E. Viagra (sildenafil citrate) and ophthalmology. Prog. Retin. Eye Res. 21, 485–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Marmor, M. F. & Kessler, R. Sildenafil (Viagra) and ophthalmology. Surv. Ophthalmol. 44, 153–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Abbott, D. et al. Preclinical safety profile of sildenafil. Int. J. Impot. Res. 16, 498–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Herrmann, H. C., Chang, G., Klugherz, B. D. & Mahoney, P. D. Hemodynamic effects of sildenafil in men with severe coronary artery disease. N. Engl. J. Med. 342, 1622–1626 (2000). First systematic clinical trial proving that sildenafil had no adverse cardiovascular effects in men with severe coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  34. Arruda-Olson, A. M., Mahoney, D. W., Nehra, A., Leckel, M. & Pellikka, P. A. Cardiovascular effects of sildenafil during exercise in men with known or probable coronary artery disease: a randomized crossover trial. JAMA 287, 719–725 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. DeBusk, R. F. et al. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease. Am. J. Cardiol. 93, 147–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Wysowski, D. K., Farinas, E. & Swartz, L. Comparison of reported and expected deaths in sildenafil (Viagra) users. Am. J. Cardiol. 89, 1331–1334 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Boshier, A., Wilton, L. V. & Shakir, S. A. Evaluation of the safety of sildenafil for male erectile dysfunction: experience gained in general practice use in England in 1999. BJU Int. 93, 796–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Fox, K. M. et al. Sildenafil citrate does not reduce exercise tolerance in men with erectile dysfunction and chronic stable angina. Eur. Heart J. 24, 2206–2212 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Halcox, J. P. et al. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J. Am. Coll. Cardiol. 40, 1232–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bocchi, E. A. et al. Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation 106, 1097–1103 (2002).

    Article  PubMed  Google Scholar 

  41. Mahmud, A., Hennessy, M. & Feely, J. Effect of sildenafil on blood pressure and arterial wave reflection in treated hypertensive men. J. Hum. Hypertens. 15, 707–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Katz, S. D. et al. Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J. Am. Coll. Cardiol. 36, 845–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Desouza, C., Parulkar, A., Lumpkin, D., Akers, D. & Fonseca, V. A. Acute and prolonged effects of sildenafil on brachial artery flow-mediated dilatation in type 2 diabetes. Diabetes Care 25, 1336–1339 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Ockaili, R., Salloum, F., Hawkins, J. & Kukreja, R. C. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am. J. Physiol. Heart Circ. Physiol. 283, H1263–H1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, R. et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 33, 2675–2680 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Egan, R. & Pomeranz, H. Sildenafil (Viagra) associated anterior ischemic optic neuropathy. Arch. Ophthalmol. 118, 291–292 (2000).

    CAS  PubMed  Google Scholar 

  47. Cunningham, A. V. & Smith, K. H. Anterior ischemic optic neuropathy associated with viagra. J. Neuroophthalmol. 21, 22–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Pomeranz, H. D., Smith, K. H., Hart, W. M. Jr. & Egan, R. A. Sildenafil-associated nonarteritic anterior ischemic optic neuropathy. Ophthalmology 109, 584–587 (2002).

    Article  PubMed  Google Scholar 

  49. Pomeranz, H. D. & Bhavsar, A. R. Nonarteritic ischemic optic neuropathy developing soon after use of sildenafil (viagra): a report of seven new cases. J. Neuroophthalmol. 25, 9–13 (2005).

    Article  PubMed  Google Scholar 

  50. Gorkin, L., Hvidsten, K., Sobel, R. E. & Siegel, R. Sildenafil citrate use and the incidence of nonarteritic anterior ischemic optic neuropathy. Int. J. Clin. Pract. 60, 500–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Hattenhauer, M. G., Leavitt, J. A., Hodge, D. O., Grill, R. & Gray, D. T. Incidence of nonarteritic anterior ischemic optic neuropathy. Am. J. Ophthalmol. 123, 103–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Johnson, L. N. & Arnold, A. C. Incidence of nonarteritic and arteritic anterior ischemic optic neuropathy. Population-based study in the state of Missouri and Los Angeles County, California. J. Neuroophthalmol. 14, 38–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Fraunfelder, F. W., Pomeranz, H. D. & Egan, R. A. Nonarteritic anterior ischemic optic neuropathy and sildenafil. Arch. Ophthalmol. 124, 733–734 (2006).

    Article  PubMed  Google Scholar 

  54. Jackson, G., Gillies, H. & Osterloh, I. Past, present, and future: a 7-year update of Viagra (sildenafil citrate). Int. J. Clin. Pract. 59, 680–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez, L. S. et al. Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr. Res. 43, 163–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Ziegler, J. W. et al. Effects of dipyridamole and inhaled nitric oxide in pediatric patients with pulmonary hypertension. Am. J. Respir. Crit. Care Med. 158, 1388–1395 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Ichinose, F., Adrie, C., Hurford, W. E., Bloch, K. D. & Zapol, W. M. Selective pulmonary vasodilation induced by aerosolized zaprinast. Anesthesiology 88, 410–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Ichinose, F., Adrie, C., Hurford, W. E. & Zapol, W. M. Prolonged pulmonary vasodilator action of inhaled nitric oxide by Zaprinast in awake lambs. J. Appl. Physiol. 78, 1288–1295 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Nagamine, J., Hill, L. L. & Pearl, R. G. Combined therapy with zaprinast and inhaled nitric oxide abolishes hypoxic pulmonary hypertension. Crit. Care Med. 28, 2420–2424 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Thusu, K. G., Morin, F. C., III, Russell, J. A. & Steinhorn, R. H. The cGMP phosphodiesterase inhibitor zaprinast enhances the effect of nitric oxide. Am. J. Respir. Crit. Care Med. 152, 1605–1610 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Humbert, M. et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43, 13S–24S (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Simonneau, G. et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43, 5S–12S (2004).

    Article  PubMed  Google Scholar 

  63. Cogan, J. D. et al. Gross BMPR2 gene rearrangements constitute a new cause for primary pulmonary hypertension. Genet. Med. 7, 169–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lane, K. B. et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nature Genet. 26, 81–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Machado, R. D. et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 68, 92–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Galie, N., Manes, A. & Branzi, A. Emerging medical therapies for pulmonary arterial hypertension. Prog. Cardiovasc. Dis. 45, 213–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Barst, R. J. et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 334, 296–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Badesch, D. B. et al. Continuous intravenous epoprostenol for pulmonary hypertension due to the scleroderma spectrum of disease. A randomized, controlled trial. Ann. Intern. Med. 132, 425–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Olschewski, H. et al. Aerosolized prostacyclin and iloprost in severe pulmonary hypertension. Ann. Intern. Med. 124, 820–824 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Olschewski, H. et al. Inhaled iloprost to treat severe pulmonary hypertension. An uncontrolled trial. German PPH Study Group. Ann. Intern. Med. 132, 435–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Olschewski, H. et al. Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124, 1294–1304 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Channick, R. et al. Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary hypertension: a placebo-controlled study. J. Heart Lung Transplant. 20, 262–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Bohle, R. M. et al. Cell type-specific mRNA quantitation in non-neoplastic tissues after laser-assisted cell picking. Pathobiology 68, 191–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. German, Z. et al. Molecular basis of cell-specific endothelial nitric-oxide synthase expression in airway epithelium. J. Biol. Chem. 275, 8183–8189 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Ide, H. et al. Regulation of pulmonary circulation by alveolar oxygen tension via airway nitric oxide. J. Appl. Physiol. 87, 1629–1636 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Grimminger, F., Spriestersbach, R., Weissmann, N., Walmrath, D. & Seeger, W. Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs. J. Appl. Physiol. 78, 1509–1515 (1995). Interesting experimental work addressing the importance of lung nitric oxide production in the mediation of hypoxic pulmonary vasoconstriction.

    Article  CAS  PubMed  Google Scholar 

  79. Ghofrani, H. A. et al. Nitric oxide pathway and phosphodiesterase inhibitors in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43, 68S–72S (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Weissmann, N. et al. Nitric oxide (NO)-dependent but not NO-independent guanylate cyclase activation attenuates hypoxic vasoconstriction in rabbit lungs. Am. J. Respir. Cell Mol. Biol. 23, 222–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Schulz, R. et al. Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea: response to CPAP therapy. Thorax 55, 1046–1051 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Spriestersbach, R., Grimminger, F., Weissmann, N., Walmrath, D. & Seeger, W. On-line measurement of nitric oxide generation in buffer-perfused rabbit lungs. J. Appl. Physiol. 78, 1502–1508 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Michelakis, E. D. The role of the NO axis and its therapeutic implications in pulmonary arterial hypertension. Heart Fail. Rev. 8, 5–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ahn, H. S., Foster, M., Cable, M., Pitts, B. J. & Sybertz, E. J. Ca/CaM-stimulated and cGMP-specific phosphodiesterases in vascular and non-vascular tissues. Adv. Exp. Med. Biol. 308, 191–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Fink, T. L., Francis, S. H., Beasley, A., Grimes, K. A. & Corbin, J. D. Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J. Biol. Chem. 274, 34613–34620 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Giordano, D., De Stefano, M. E., Citro, G., Modica, A. & Giorgi, M. Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain. Biochim. Biophys. Acta 1539, 16–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Wharton, J. et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am. J. Respir. Crit. Care Med. 172, 105–113 (2005). Experimental study providing evidence for the antiproliferative effects of sildenafil in human pulmonary artery cells.

    Article  PubMed  Google Scholar 

  88. Corbin, J. D., Beasley, A., Blount, M. A. & Francis, S. H. High lung PDE5: A strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem. Biophys. Res. Commun. 334, 930–938 (2005). Notable work that explains on a cellular and molecular level the selectivity of PDE5 inhibitors for the pulmonary circulation.

    Article  CAS  PubMed  Google Scholar 

  89. Haynes, J., Jr., Kithas, P. A., Taylor, A. E. & Strada, S. J. Selective inhibition of cGMP-inhibitable cAMP phosphodiesterase decreases pulmonary vasoreactivity. Am. J. Physiol. 261, H487–H492 (1991).

    CAS  PubMed  Google Scholar 

  90. Braner, D. A., Fineman, J. R., Chang, R. & Soifer, S. J. M&B 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. Am. J. Physiol. 264, H252–H258 (1993).

    CAS  PubMed  Google Scholar 

  91. Cohen, A. H. et al. Inhibition of cyclic 3′-5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Invest. 97, 172–179 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao, L. et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 104, 424–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, L., Mason, N. A., Strange, J. W., Walker, H. & Wilkins, M. R. Beneficial effects of phosphodiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity. Circulation 107, 234–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Sebkhi, A., Strange, J. W., Phillips, S. C., Wharton, J. & Wilkins, M. R. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 107, 3230–3235 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Hanson, K. A. et al. Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity. Am. J. Physiol. 275, L931–L941 (1998).

    CAS  PubMed  Google Scholar 

  96. Nangle, M. R., Cotter, M. A. & Cameron, N. E. An in vitro study of corpus cavernosum and aorta from mice lacking the inducible nitric oxide synthase gene. Nitric Oxide 9, 194–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Bloch, W. et al. Evidence for the involvement of endothelial nitric oxide synthase from smooth muscle cells in the erectile function of the human corpus cavernosum. Urol. Res. 26, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Itoh, T. et al. A combination of oral sildenafil and beraprost ameliorates pulmonary hypertension in rats. Am. J. Respir. Crit. Care Med. 169, 34–38 (2004).

    Article  PubMed  Google Scholar 

  99. Schermuly, R. T. et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am. J. Respir. Crit. Care Med. 169, 39–45 (2004).

    Article  PubMed  Google Scholar 

  100. Sitbon, O. et al. Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension [see comments]. Eur. Respir. J. 12, 265–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Rossaint, R. et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 328, 399–405 (1993). Milestone work reporting the first therapeutic use of inhaled nitric oxide to treat acute pulmonary hypertension and gas-exchange disturbances in acute respiratory distress syndrome patients.

    Article  CAS  PubMed  Google Scholar 

  102. Atz, A. M. & Wessel, D. L. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 91, 307–310 (1999). First report of the use of sildenafil in human pulmonary hypertension to facilitate weaning from inhaled nitric oxide in paediatric patients.

    Article  CAS  PubMed  Google Scholar 

  103. Prasad, S., Wilkinson, J. & Gatzoulis, M. A. Sildenafil in primary pulmonary hypertension. N. Engl. J. Med. 343, 1342 (2000). First case report on the successful long-term therapy of one adult patient with severe idiopathic pulmonary arterial hypertension with oral sildenafil.

    Article  CAS  PubMed  Google Scholar 

  104. Abrams, D., Schulze-Neick, I. & Magee, A. G. Sildenafil as a selective pulmonary vasodilator in childhood primary pulmonary hypertension. Heart 84, E4 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Patole, S. & Travadi, J. Sildenafil for 'blue babies'. Ethics, conscience, and science have to be balanced against limited resources. BMJ 325, 1174 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Oliver, J. & Webb, D. J. Sildenafil for 'blue babies'. Such unlicensed drug use might be justified as last resort. BMJ 325, 1174 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ghofrani, H. A. et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann. Intern. Med. 136, 515–522 (2002). First large clinical trial assessing the acute haemodynamic effects of sildenafil as compared with inhaled nitric oxide, inhaled iloprost or combinations of sildenafil and iloprost.

    Article  CAS  PubMed  Google Scholar 

  108. Wilkens, H. et al. Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation 104, 1218–1222 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Kothari, S. S. & Duggal, B. Chronic oral sildenafil therapy in severe pulmonary artery hypertension. Indian Heart J. 54, 404–409 (2002).

    PubMed  Google Scholar 

  110. Sastry, B. K. et al. A study of clinical efficacy of sildenafil in patients with primary pulmonary hypertension. Indian Heart J. 54, 410–414 (2002).

    CAS  PubMed  Google Scholar 

  111. Sastry, B. K., Narasimhan, C., Reddy, N. K. & Raju, B. S. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J. Am. Coll. Cardiol. 43, 1149–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Ghofrani, H. A. et al. Oral sildenafil as long-term adjunct therapy to inhaled iloprost in severe pulmonary arterial hypertension. J. Am. Coll. Cardiol. 42, 158–164 (2003). The first report of the successful long-term use of a combination therapy in patients with severe pulmonary hypertension.

    Article  CAS  PubMed  Google Scholar 

  113. Watanabe, H. et al. Sildenafil for primary and secondary pulmonary hypertension. Clin. Pharmacol. Ther. 71, 398–402 (2002).

    Article  PubMed  Google Scholar 

  114. Zimmermann, A. T., Calvert, A. F. & Veitch, E. M. Sildenafil improves right-ventricular parameters and quality of life in primary pulmonary hypertension. Intern. Med. J. 32, 424–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Singh, B. et al. Sildenafil in the management of primary pulmonary hypertension. Indian Heart J. 54, 297–300 (2002).

    PubMed  Google Scholar 

  116. Lepore, J. J. et al. Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am. J. Cardiol. 90, 677–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Michelakis, E. et al. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105, 2398–2403 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Carlsen, J., Kjeldsen, K. & Gerstoft, J. Sildenafil as a successful treatment of otherwise fatal HIV-related pulmonary hypertension. AIDS 16, 1568–1569 (2002).

    Article  PubMed  Google Scholar 

  119. Schumacher, Y. O., Zdebik, A., Huonker, M. & Kreisel, W. Sildenafil in HIV-related pulmonary hypertension. AIDS 15, 1747–1748 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Ghofrani, H. A. et al. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am. J. Respir. Crit. Care Med. 167, 1139–1141 (2003).

    Article  PubMed  Google Scholar 

  121. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005). Report on the pivotal randomized controlled trial which resulted in the final approval of oral sildenafil for the treatment of pulmonary arterial hypertension.

    Article  CAS  PubMed  Google Scholar 

  122. Moncada, I., Jara, J., Subira, D., Castano, I. & Hernandez, C. Efficacy of sildenafil citrate at 12 hours after dosing: re-exploring the therapeutic window. Eur. Urol. 46, 357–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Mullershausen, F. et al. Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J. Cell Biol. 160, 719–727 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Francis, S. H. et al. Ligand-induced conformational changes in cyclic nucleotide phosphodiesterases and cyclic nucleotide-dependent protein kinases. Methods 14, 81–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Gopal, V. K., Francis, S. H. & Corbin, J. D. Allosteric sites of phosphodiesterase-5 (PDE5). A potential role in negative feedback regulation of cGMP signaling in corpus cavernosum. Eur. J. Biochem. 268, 3304–3312 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Corbin, J. D. & Francis, S. H. Pharmacology of phosphodiesterase-5 inhibitors. Int. J. Clin. Pract. 56, 453–459 (2002).

    CAS  PubMed  Google Scholar 

  127. Huai, Q., Liu, Y., Francis, S. H., Corbin, J. D. & Ke, H. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J. Biol. Chem. 279, 13095–13101 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Michelakis, E. D. et al. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 108, 2066–2069 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. CELORIA, G. C., FRIEDELL, G. H. & SOMMERS, S. C. Raynaud's disease and primary pulmonary hypertension. Circulation 22, 1055–1059 (1960).

    Article  CAS  PubMed  Google Scholar 

  130. SMITH, W. M. & KROOP, I. G. Raynaud's disease in primary pulmonary hypertension. JAMA 165, 1245–1248 (1957).

    Article  CAS  Google Scholar 

  131. D'Alonzo, G. E. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 115, 343–349 (1991). Milestone report on the natural course of primary pulmonary hypertension based on data from the National Institutes of Health registry. Most currently published studies refer to this report if comparisons to a historic control are required.

    Article  CAS  PubMed  Google Scholar 

  132. Kallenberg, C. G. Overlapping syndromes, undifferentiated connective tissue disease, and other fibrosing conditions. Curr. Opin. Rheumatol. 7, 568–573 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Pope, J. et al. Iloprost and cisaprost for Raynaud's phenomenon in progressive systemic sclerosis. Cochrane. Database. Syst. Rev. CD000953 (2000).

  134. Belch, J. J. & Ho, M. Pharmacotherapy of Raynaud's phenomenon. Drugs 52, 682–695 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Boin, F. & Wigley, F. M. Understanding, assessing and treating Raynaud's phenomenon. Curr. Opin. Rheumatol. 17, 752–760 (2005).

    CAS  PubMed  Google Scholar 

  136. Kamata, Y., Kamimura, T., Iwamoto, M. & Minota, S. Comparable effects of sildenafil citrate and alprostadil on severe Raynaud's phenomenon in a patient with systemic sclerosis. Clin. Exp. Dermatol. 30, 451 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Gore, J. & Silver, R. Oral sildenafil for the treatment of Raynaud's phenomenon and digital ulcers secondary to systemic sclerosis. Ann. Rheum. Dis. 64, 1387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rosenkranz, S. et al. Sildenafil improved pulmonary hypertension and peripheral blood flow in a patient with scleroderma-associated lung fibrosis and the raynaud phenomenon. Ann. Intern. Med. 139, 871–873 (2003).

    Article  PubMed  Google Scholar 

  139. Lichtenstein, J. R. Use of sildenafil citrate in Raynaud's phenomenon: comment on the article by Thompson et al. Arthritis Rheum. 48, 282–283 (2003).

    Article  PubMed  Google Scholar 

  140. Fries, R., Shariat, K., von, W. H. & Bohm, M. Sildenafil in the treatment of Raynaud's phenomenon resistant to vasodilatory therapy. Circulation 112, 2980–2985 (2005). Original report of the first randomized controlled trial proving the efficacy of sildenafil to treat Raynauds's phenomenon.

    Article  CAS  PubMed  Google Scholar 

  141. Maurice, D. H. et al. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol. Pharmacol. 64, 533–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Agusti, A. G. & Rodriguez-Roisin, R. Effect of pulmonary hypertension on gas exchange. Eur. Respir. J. 6, 1371–1377 (1993).

    CAS  PubMed  Google Scholar 

  143. Ghofrani, H. A. et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet 360, 895–900 (2002). The first clinical study to show that an oral vasodilator (sildenafil) can improve gas exchange, with comparable effects to those achievable with inhaled nitric oxide.

    Article  CAS  PubMed  Google Scholar 

  144. Ghofrani, H. A. et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med. 141, 169–177 (2004). This randomized controlled trial proved for the first time that effective treatment of hypoxic pulmonary hypertension with sildenafil results in improvements of exercise ability and right heart function under such conditions.

    Article  CAS  PubMed  Google Scholar 

  145. Richalet, J. P. et al. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am. J. Respir. Crit. Care Med. 171, 275–281 (2005).

    Article  PubMed  Google Scholar 

  146. Hsu, A. R. et al. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J. Appl. Physiol. (2006).

  147. Naeije, R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2, 20–22 (2005).

    Article  PubMed  Google Scholar 

  148. Higenbottam, T. Pulmonary hypertension and chronic obstructive pulmonary disease: a case for treatment. Proc. Am. Thorac. Soc. 2, 12–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Voelkel, N. F. & Cool, C. D. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Eur. Respir. J. Suppl. 46, 28s–32s (2003).

    Article  PubMed  Google Scholar 

  150. Barbera, J. A., Peinado, V. I. & Santos, S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur. Respir. J. 21, 892–905 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Alp, S., Skrygan, M., Schmidt, W. E. & Bastian, A. Sildenafil improves hemodynamic parameters in COPD-an investigation of six patients. Pulm. Pharmacol. Ther. (2005).

  152. Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    Article  PubMed  Google Scholar 

  153. Anversa, P. et al. Ischemic cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia. Ann. NY Acad. Sci. 752, 47–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Anversa, P., Capasso, J. M., Olivetti, G. & Sonnenblick, E. H. Cellular basis of ventricular remodeling in hypertensive cardiomyopathy. Am. J. Hypertens. 5, 758–770 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Kasimir, M. T. et al. Reverse cardiac remodelling in patients with primary pulmonary hypertension after isolated lung transplantation. Eur. J. Cardiothorac. Surg. 26, 776–781 (2004).

    Article  PubMed  Google Scholar 

  156. Wilkins, M. R. et al. Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) Study. Am. J. Respir. Crit. Care Med. 171, 1292–1297 (2005).

    Article  PubMed  Google Scholar 

  157. Kentera, D. & Susic, D. Dynamics of regression of right ventricular hypertrophy in rats with hypoxic pulmonary hypertension. Respiration 39, 272–275 (1980).

    Article  CAS  PubMed  Google Scholar 

  158. Rich, S. & Brundage, B. H. High-dose calcium channel-blocking therapy for primary pulmonary hypertension: evidence for long-term reduction in pulmonary arterial pressure and regression of right ventricular hypertrophy. Circulation 76, 135–141 (1987).

    Article  CAS  PubMed  Google Scholar 

  159. Pelouch, V. et al. Regression of chronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril. Cardiovasc. Drugs Ther. 11, 177–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. O'Blenes, S. B., Fischer, S., McIntyre, B., Keshavjee, S. & Rabinovitch, M. Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. J. Thorac. Cardiovasc. Surg. 121, 279–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nature Med. 11, 214–222 (2005). Milestone work highlighting the importance of PDE5 in the course of myocardial hypertrophy and the potential of the PDE5 inhibitor sildenafil as an antihypertrophic treatment.

    Article  CAS  PubMed  Google Scholar 

  162. Hassan, M. A. & Ketat, A. F. Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol. 5, 10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Katz, S. D. et al. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and chronic heart failure. Am. J. Cardiol. 95, 36–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Lepore, J. J. et al. Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127, 1647–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Hirata, K., Adji, A., Vlachopoulos, C. & O'rourke, M. F. Effect of Sildenafil on Cardiac Performance in Patients With Heart Failure. Am. J. Cardiol. 96, 1436–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Freitas, D., Athanazio, R., Almeida, D., Dantas, N. & Reis, F. Sildenafil improves quality of life in men with heart failure and erectile dysfunction. Int. J. Impot. Res. 18, 210–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Fisher, P. W., Salloum, F., Das, A., Hyder, H. & Kukreja, R. C. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111, 1601–1610 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Webster, L. J., Michelakis, E. D., Davis, T. & Archer, S. L. Use of sildenafil for safe improvement of erectile function and quality of life in men with New York Heart Association classes II and III congestive heart failure: a prospective, placebo-controlled, double-blind crossover trial. Arch. Intern. Med. 164, 514–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Alaeddini, J. et al. Efficacy and safety of sildenafil in the evaluation of pulmonary hypertension in severe heart failure. Am. J. Cardiol. 94, 1475–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Guazzi, M., Tumminello, G., Di, M. F., Fiorentini, C. & Guazzi, M. D. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J. Am. Coll. Cardiol. 44, 2339–2348 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Mickley, H. & Poulsen, T. S. Use of sildenafil is safe in men with congestive heart failure. Arch. Intern. Med. 164, 2068 (2004).

    Article  PubMed  Google Scholar 

  172. Mikhail, N. Efficacy and safety of sildenafil in patients with congestive heart failure. Arch. Intern. Med. 164, 2067–2068 (2004).

    Article  PubMed  Google Scholar 

  173. Prickaerts, J. et al. Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113, 351–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Blokland, A., Prickaerts, J., Honig, W. & de Vente, J. State-dependent impairment in object recognition after hippocampal NOS inhibition. Neuroreport 9, 4205–4208 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Kruuse, C., Thomsen, L. L., Jacobsen, T. B. & Olesen, J. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J. Cereb. Blood Flow Metab. 22, 1124–1131 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Arnavaz, A. et al. Effect of sildenafil (Viagra) on cerebral blood flow velocity: a pilot study. Psychiatry Res. 122, 207–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Kruuse, C., Thomsen, L. L., Birk, S. & Olesen, J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126, 241–247 (2003).

    Article  PubMed  Google Scholar 

  178. Rosengarten, B., Huwendiek, O. & Kaps, M. Neurovascular coupling and cerebral autoregulation can be described in terms of a control system. Ultrasound Med. Biol. 27, 189–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Rosengarten, B., Osthaus, S. & Kaps, M. Doppler investigation of within-session reproducibility in a visual stimulation task to assess the volunteer-dependent variation. Cerebrovasc. Dis. 16, 53–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Sette, G. et al. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain 112 (Pt 4), 931–951 (1989).

    Article  Google Scholar 

  182. Ito, H., Kanno, I., Takahashi, K., Ibaraki, M. & Miura, S. Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography. Neuroimage 19, 1163–1169 (2003).

    Article  PubMed  Google Scholar 

  183. Kidwell, C. S., Villablanca, J. P. & Saver, J. L. Advances in neuroimaging of acute stroke. Curr. Atheroscler. Rep. 2, 126–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Lang, C. J. The use of neuroimaging techniques for clinical detection of neurotoxicity: a review. Neurotoxicology 21, 847–855 (2000).

    CAS  PubMed  Google Scholar 

  185. Inoha, S. et al. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model. Neurol. Res. 24, 607–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Zhang, R. et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 92, 308–313 (2003). Elegant work describing the importance of nitric oxide and cGMP in cerebral repair after stroke injury.

    Article  CAS  PubMed  Google Scholar 

  187. Buerk, D. G., Ances, B. M., Greenberg, J. H. & Detre, J. A. Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage 18, 1–9 (2003).

    Article  PubMed  Google Scholar 

  188. Rosengarten, B. et al. Sildenafil Improves Dynamic Vascular Function in the Brain: Studies in Patients with Pulmonary Hypertension. Cerebrovasc. Dis. 21, 194–200 (2005). First clinical study showing improvements in microvascular dynamic adaptation of blood flow to regional neuronal activity (demand-dependent perfusion) in the brain following sildenafil administration.

    Article  CAS  PubMed  Google Scholar 

  189. Wang, L., Gang, Z. Z., Lan, Z. R. & Chopp, M. Activation of the PI3-K/Akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone. J. Cereb. Blood Flow Metab. 25, 1150–1158 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Musicki, B. et al. Erection capability is potentiated by long-term sildenafil treatment: role of blood flow-induced endothelial nitric-oxide synthase phosphorylation. Mol. Pharmacol. 68, 226–232 (2005). Intriguing investigation suggesting a new mechanistic explanation for the long-term effects induced by sildenafil treatment, which differ from short-term vasodilatory effects of the same drug.

    CAS  PubMed  Google Scholar 

  191. Francis, S. H., Turko, I. V. & Corbin, J. D. Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52 (2001).

    CAS  PubMed  Google Scholar 

  192. Fawcett, L. et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc. Natl Acad. Sci. USA 97, 3702–3707 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Beavo, J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 75, 725–748 (1995). Excellent overview of PDEs and their functional implications by one of the most renowned scientists in this field.

    Article  CAS  PubMed  Google Scholar 

  194. Dousa, T. P. Cyclic-3′,5′-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int. 55, 29–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Hayashi, M. et al. Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 250, 751–756 (1998).

    Article  CAS  PubMed  Google Scholar 

  196. Soderling, S. H., Bayuga, S. J. & Beavo, J. A. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc. Natl Acad. Sci. USA 95, 8991–8996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yang, Q. et al. A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem. Biophys. Res. Commun. 205, 1850–1858 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Pyne, N. J. & Furman, B. L. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46, 1179–1189 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Glavas, N. A., Ostenson, C., Schaefer, J. B., Vasta, V. & Beavo, J. A. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc. Natl Acad. Sci. USA 98, 6319–6324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Brown, D. G. et al. Crystal structures of human phosphodiesterase 5 and its ligand complex and their use in the design of site-directed mutants and design or screening of inhibitor compounds. World Patent 2003038080 (2003).

  201. Brown, D. G. et al. Crystal structures of human phosphodiesterase-5 and its ligand complex and their use in the design of site-directed mutants and design or screening of inhibitor compounds. World Patent 2004097010 (2004).

Download references

Acknowledgements

Our gratitude goes to R. Schermuly, N. Weissmann and R. Morty (from the University of Giessen Lung Center (UGLC)) and to G. Butrous, D. Brown and C. Wayman (from Pfizer Ltd., Sandwich) for thorough linguistic editing, helpful comments and input to the manuscript. This work was supported by the German research foundation (DFG; Sonderforschungsbereich 547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein A. Ghofrani.

Ethics declarations

Competing interests

H.A.G. has received honoraria for invited lectures from Schering AG, Altana Pharma, Pfizer, Actelion, CoTherix and United Therapeutics. H.A.G. is also a consultant to Altana Pharma, Schering AG, Pfizer, Novartis, Actelion and CoTehrix. H.A.G. has received unrestricted research grants from Altana Pharma and Pfizer. H.A.G. holds no stocks or shares of any of the aforementioned companies.

I.O. was responsible for the clinical development of Viagra for erectile dysfunction and is still a full-time employe of Pfizer Ltd (the manufacturer of Viagra). I.O. also holds shares in Pfizer.

F.G. has received honoraria for invited lectures from Schering AG, Altana Pharma and Pfizer. F.G. is also a consultant to Altana Pharma, Pfizer and Schering AG. F.G. has received unrestricted research grants from Altana Pharma, Bayer and Pfizer. F.G. holds no stocks or shres of any of the aforementioned companies.

Glossary

Angina pectoris

Severe chest pains caused by insufficient supply of blood to the heart.

Tachyphylaxis

Reduced responsiveness to a drug that is chronically supplied and requires dose up-titration to maintain the same level of efficacy over time.

Corpus cavernosum

An expandable erectile tissue along the length of the penis, which fills with blood during male erection.

Pulmonary hypertension

Increased blood pressure (>25 mm Hg at rest and >30 mm Hg for the mean pulmonary arterial pressure) in lung vessels.

Alveolar hypoxia

Reduced oxygen levels (<80 mm Hg) in the lung alveoli caused by impaired ventilation (for example, in chronic lung disorders) or reduced oxygen content in the inspired air (for example, at high altitudes).

Hypoxic pulmonary vasoconstriction

Constriction of pulmonary vessels in the presence of alveolar hypoxia, which prevents the perfusion of non-ventilated areas of lung and maintains optimized gas-exchange properties (also known as the von Euler–Liljestrand mechanism).

Exercise tolerance

Ability to perform physical strain until limited by occurrence of peripheral (muscular) exhaustion, shortness of breath and/or insufficient blood supply to the myocardium (due, for example, to coronary heart disease).

Neurovascular coupling

Mechanism by which local blood flow in the brain is adapted to underlying neuronal activity in a fast and fine-tuned manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghofrani, H., Osterloh, I. & Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5, 689–702 (2006). https://doi.org/10.1038/nrd2030

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing