Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Case History
  • Published:

The war against influenza: discovery and development of sialidase inhibitors

Abstract

The threat of a major human influenza pandemic, in particular from highly aggressive strains such as avian H5N1, has emphasized the need for therapeutic strategies to combat these pathogens. At present, two inhibitors of sialidase (also known as neuraminidase), a viral enzyme that has a key role in the life cycle of influenza viruses, would be the mainstay of pharmacological strategies in the event of such a pandemic. This article provides a historical perspective on the discovery and development of these drugs — zanamivir and oseltamivir — and highlights the value of structure-based drug design in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influenza virus surface glycoproteins.
Figure 2: Life cycle of the influenza virus and targets for therapeutic intervention.
Figure 3: Chemical structures of selected compounds.
Figure 4: Interaction of α-N-acetylneuraminic acid (1a) with influenza virus sialidase.
Figure 5: Structures of influenza virus sialidase with zanamivir and oseltamivir carboxylate.

Similar content being viewed by others

References

  1. Yuen, K. Y. & Wong, S. S. Human infection by avian influenza A H5N1. Hong Kong Med. J. 11, 189–199 (2005).

    CAS  PubMed  Google Scholar 

  2. Maines, T. R. et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 79, 11788–11800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buchy, P. et al. Influenza A/H5N1 virus infection in humans in Cambodia. J. Clin. Virol. 39, 164–168 (2007).

    Article  PubMed  Google Scholar 

  4. Douglas, R. G. Jr. Prophylaxis and treatment of influenza. N. Engl. J. Med. 322, 443–450 (1990).

    Article  PubMed  Google Scholar 

  5. Wintermeyer, S. M. & Nahata, M. C. Rimantadine: a clinical perspective. Ann. Pharmacother. 29, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Pinto, L. H., Holsinger, L. J. & Lamb, R. A. Influenza virus M2 protein has ion channel activity. Cell 69, 517–528 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Hay, A. J. et al. in Options for the Control of Influenza Virus II (ed. Hannoun, C. E.) 281–288 (Excerpta Medica, Amsterdam, 1993).

    Google Scholar 

  8. Hayden, F. G. in Principles and Practice of Infectious Disease (eds Mandell, G. L., Douglas, R. G. J. & Bennett, J. E.) 3–15 (Churchill Livingston, New York, 1993).

    Google Scholar 

  9. Laver, G. & Garman, E. Pandemic influenza: its origin and control. Microbes Infect. 4, 1309–1316 (2002).

    Article  PubMed  Google Scholar 

  10. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Rich, J. R., Gehle, D. & von Itzstein, M. in Comprehensive Glycoscience: from Chemistry to Systems Biology (eds. Kamerling, J. et al.) (Elsevier, Amsterdam, 2007).

    Google Scholar 

  12. Webster, R. G. et al. in Options for the Control of Influenza Virus II (ed. Hannoun, C.) 177–185 (Excerpta Medica, Amsterdam, 1993).

    Google Scholar 

  13. Wagner, R., Matrosovich, M. & Klenk, H.-D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 12, 159–166 (2002).

    Article  PubMed  Google Scholar 

  14. Oxford, J. S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol. 10, 119–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Herrler, G., Hausmann, J. & Klenk, H.-D. in Biology of the Sialic Acids (ed. Rosenberg, A.) 315–336 (Plenum Press, New York, 1995).

    Book  Google Scholar 

  16. Couceiro, J. N., Paulson, J. C. & Baum, L. G. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29, 155–165 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, Y. et al. Sialic acid species as a determinant of the host range of influenza A viruses. J. Virol. 74, 11825–11831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matrosovich, M. & Klenk, H.-D. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13, 85–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Weis, W. et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Sauter, N. K. et al. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 89, 324–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Watowich, S. J., Skehel, J. J. & Wiley, D. C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure 2, 719–731 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Colman, P. M. & Ward, C. W. Structure and diversity of influenza virus neuraminidase. Curr. Top. Microbiol. Immunol. 114, 177–255 (1985).

    CAS  PubMed  Google Scholar 

  24. Palese, P., Tobita, K., Ueda, M. & Compans, R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397–410 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C., Eichelberger, M. C., Compans, R. W. & Air, G. M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol. 69, 1099–1106 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Varghese, J. N., Laver, W. G. & Colman P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303, 35–40 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Colman, P. M., Varghese, J. N. & Laver, W. G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41–44 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, B. J. et al. Structural studies of the resistance of influenza virus neuraminidase to inhibitors. J. Med. Chem. 45, 2207–2212 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Colman, P. M. Neuraminidase inhibitors as antivirals. Vaccine 20, S55–S58 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, C. U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Lentz, M. R., Webster, R. G. & Air, G. M. Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism. Biochemistry 26, 5351–5358 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Chong, A. K., Pegg, M. S., Taylor, N. R. & von Itzstein, M. Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus. Eur. J. Biochem. 207, 335–343 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Tiralongo, J., Pegg, M. S. & von Itzstein, M. Effect of substrate aglycon on enzyme mechanism in the reaction of sialidase from influenza virus. FEBS Lett. 372, 148–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Drzeniek, R. Viral and bacterial neuraminidases. Curr. Top. Microbiol. Immunol. 59, 35–74 (1972).

    CAS  PubMed  Google Scholar 

  36. Flashner, M., Kessler, J. & Tanenbaum, S. W. The interaction of substrate-related ketals with bacterial and viral neuraminidases. Arch. Biochem. Biophys. 221, 188–196 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Colman, P. M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 3, 1687–1696 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varghese, J. N., Epa, V. C. & Colman, P. M. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase. Protein Sci. 4, 1081–1087 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor, N. R. & von Itzstein, M. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J. Med. Chem. 37, 616–624 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Wilson, J. C. & von Itzstein, M. Recent strategies in the search for new anti-influenza therapies. Curr. Drug Targets 4, 389–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Colman, P. M. et al. Preparation of 2-deoxy-N-acetylneuraminic acid derivatives as antiviral compounds which bind the active site of influenza neuraminidase. Patent WO9206691 (1992).

  42. Palese, P., Schulman, J. L., Bodo, G. & Meindl, P. Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 59, 490–498 (1974).

    Article  CAS  PubMed  Google Scholar 

  43. Palese, P. & Compans, R. W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J. Gen. Virol. 33, 159–163 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Palese, P. & Schulman, J. L. in Chemoprophylaxis and Viral Infections of the Respiratory Tract (ed. Oxford, J. S.) 189–205 (CRC Press, Cleveland, 1977).

    Google Scholar 

  45. Nöhle, U., Beau, J. M. & Schauer, R. Uptake, metabolism and excretion of orally and intravenously administered, double-labeled N-glycoloylneuraminic acid and single-labeled 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in mouse and rat. Eur. J. Biochem. 126, 543–548 (1982).

    Article  PubMed  Google Scholar 

  46. von Itzstein, M. et al. A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39, 388–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Goodford, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. von Itzstein, M., Wu, W.-Y. & Jin, B. The synthesis of 2,3-didehydro-2,4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor. Carbohydr. Res. 259, 301–305 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Holzer, C. T. et al. Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj. J. 10, 40–44 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Woods, J. M. et al. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob. Agents Chemother. 37, 1473–1479 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, C. Y. et al. A nonsynonymous SNP in human cytosolic sialidase in a small Asian population results in reduced enzyme activity: potential link with severe adverse reactions to oseltamivir. Cell Res. 17, 357–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Mann, M. C. et al. Unsaturated N-acetyl-D-glucosaminuronic acid glycosides as inhibitors of influenza virus sialidase. Glycoconj. J. 23, 127–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Babu, Y. S. et al. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43, 3482–3486 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. DeGoey, D. A. et al. Enantioselective synthesis of antiinfluenza compound A-315675. J. Org. Chem. 67, 5445–5453 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, C. U. et al. Structure–activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J. Med. Chem. 41, 2451–2460 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Le, Q. M. et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Okumura, A. et al. Oseltamivir and delirious behavior in children with influenza. Pediatr. Infect. Dis. J. 25, 572 (2006).

    Article  PubMed  Google Scholar 

  58. Russell, R. J., et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Tsai, C. H., Lee, P. Y., Stollar, V., Li, M. L. Antiviral therapy targeting viral polymerase. Curr. Pharm. Des. 12, 1339–1355 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. De Clercq, E. & Neyts, J. Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention. Trends Pharmacol. Sci. 28, 280–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ilyushina, N. A. Bovin, N. V., Webster, R. G. & Govorkova, E. A. Combination chemotherapy, a potential strategy for reducing the emergence of drug-resistant influenza A variants. Antiviral Res. 70, 121–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Hasegawa, H. et al. Development of a mucosal vaccine for influenza viruses: preparation for a potential influenza pandemic. Expert Rev. Vaccines 6, 193–201 (2007).

    Article  PubMed  Google Scholar 

  63. Carrat, F. & Flahault, A. Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852–6862 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Varghese, J. N., McKimm-Breschkin, J. L., Caldwell, J. B., Kortt, A. A. & Colman P. M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14, 327–332 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Burmeister, W. P. et al. Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Zechel, D. L. & Withers, S. G. Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr. Opin. Chem. Biol. 5, 643–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Australian Research Council is acknowledged for its generous support through the award of a Federation Fellowship. J. Dyason is thanked for providing a number of the computer-generated graphics and for reading this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Swissprot ENZYME

Exo-α-sialidase

FURTHER INFORMATION

Griffith university institute of Glycomics

World Health organization

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6, 967–974 (2007). https://doi.org/10.1038/nrd2400

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd2400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing