Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic potential of complement modulation

Key Points

  • The complement system is an important part of the innate immune system that participates in tissue injury in a number of inflammatory and autoimmune diseases.

  • Polymorphisms in genes that encode complement proteins involved in activation or regulation of the system are recognized as triggers of diseases such as atypical haemolytic uraemic syndrome and age-related macular degeneration.

  • Modulation of complement activation could be beneficial in reducing tissue injury or even preventing the onset of such diseases.

  • Currently, only a few agents that are known to inhibit complement activation are approved for clinical use for narrow indications. These include an antibody to C5 (eculizumab) aimed at the treatment of paroxysmal nocturnal haemoglobinuria, Serping1 concentrate as a replacement therapy in hereditary angioedema and pooled immunoglobulin G preparations for intravenous use in some autoimmune diseases.

  • Recent literature shows that there is a growing interest in developing new and potent agents that target complement proteins and products of activation. Some examples include humanized monoclonal antibodies to complement proteins, activation products or receptors, synthetic molecules that target complement proteins or receptors, constructs of naturally occurring complement regulators and receptors modified to enhance tissue-directed activity and prolong half-life.

  • Many new agents have been tested in in vitro and in vivo animal models, generally with encouraging results. Some agents have reached clinical trials for indications such as hereditary angioedema, age-related macular degeneration, rheumatoid arthritis and psoriasis.

  • Because of a better understanding of the role of complement in many pathological states, targeting its activation holds promise as an innovative way to approach therapeutic intervention in many patients.

Abstract

The complement system is an essential component of innate immunity that has been more recently recognized as an unexpected player in various pathological states. These include age-related macular degeneration, atypical haemolytic uraemic syndrome, allergy, foetal loss, and axonal and myelin degradation after trauma. Its importance has also been recognized in physiological processes including haematopoietic stem cell homing to the bone marrow, liver regeneration and modulation of adaptive immune responses. Although the complement system has long been known to be involved in autoimmune and inflammatory diseases, few agents that target the complement system are currently approved for clinical use. However, renewed interest in modulating this system in various pathological conditions has emerged, and several agents are now in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complement activation pathways.
Figure 2: Mechanisms of complement regulation.
Figure 3: Site of action of complement inhibitors.

Similar content being viewed by others

References

  1. Wagner, E. Jiang, H. & Frank, M. M. in Clinical Diagnosis and Management by Laboratory Methods (ed. Henry, J. B.) 892–913 (W. B. Saunders, Philadelphia, 2001).

    Google Scholar 

  2. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    CAS  PubMed  Google Scholar 

  3. Speth, C., Prodinger, W. M., Würzner, R., Stoiber, H. & Dierich, M. P. in Fundamental Immunology (ed. Paul, W. E.) 1047–1078 (Lippincott Williams & Wilkins, Philadelphia, 2008).

    Google Scholar 

  4. Zipfel, P. F., Heinen, S., Józsi, M. & Skerka, C. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol. Immunol. 43, 97–106 (2006).

    CAS  PubMed  Google Scholar 

  5. Frank, M. M. in The Human Complement System in Health and Disease (eds Volanakis, J. A. & Frank, M. M.) 1–8 (Marcel Dekker, New York, 1998).

    Google Scholar 

  6. Makrides, S. C. Therapeutic inhibition of the complement system. Pharmacol. Rev. 50, 59–87 (1998).

    CAS  PubMed  Google Scholar 

  7. Wagner, E. & Frank, M. M. in The Human Complement System in Health and Disease (eds Volanakis, J. & Frank, M. M.) 527–546 (Marcel Dekker, New York, 1998).

    Google Scholar 

  8. Mollnes, T. E. & Kirschfink, M. Strategies of therapeutic complement inhibition. Mol. Immunol. 43, 107–121 (2006).

    CAS  PubMed  Google Scholar 

  9. Cole, D. S. & Morgan, B. P. Beyond lysis: how complement influences cell fate. Clin. Sci. 104, 455–466 (2003).

    CAS  PubMed  Google Scholar 

  10. Holers, V. M. The spectrum of complement alternative pathway-mediated diseases. Immunol. Rev. 223, 300–316 (2008). This review describes the alternative pathway of complement activation and its increasingly recognized role in many diseases.

    CAS  PubMed  Google Scholar 

  11. Kemper, C. & Hourcade, D. E. Properdin: new roles in pattern recognition and target clearance. Mol. Immunol. 45, 4048–4056 (2008). This review presents experimental evidence of a role of properdin as a recognition molecule that directs alternative-pathway activation on microorganisms and apoptotic cells, allowing a better understanding of complement activation mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dommett, R. M., Klein, N. & Turner M. W. Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68, 193–209 (2006).

    CAS  PubMed  Google Scholar 

  13. Thiel, S. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol. Immunol. 44, 3875–3888 (2007).

    CAS  PubMed  Google Scholar 

  14. Atkinson, J. P. & Frank, M. M. Bypassing complement: evolutionary lessons and future implications. J. Clin. Invest. 116, 1215–1218 (2006). This commentary article describes the largely unrecognized complement-bypass pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Markiewski, M. M. & Lambris, J. D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am. J. Pathol. 171, 715–727 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cicardi, M., Zingale, L., Zanichelli, A., Pappalardo, E. & Cicardi, B. C1 inhibitor: molecular and clinical aspects. Springer Semin. Immun. 27, 286–298 (2005).

    CAS  Google Scholar 

  17. Chen, C.-H., Lam, C. F. & Boackle, R. J. C1 inhibitor removes the entire C1qr2s2 complex from anti-C1Q monoclonal antibodies with low binding affinities. Immunology 95, 648–654 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, C.-H. & Boackle, R. J. A newly discovered function for C1 inhibitor, removal of the entire C1qr2s2 complex from immobilized human IgG subclasses. Clin. Immunol. Immunopathol. 87, 68–74 (1998).

    CAS  PubMed  Google Scholar 

  19. Jiang, H., Wagner, E., Zhang, H. & Frank, M. M. Complement 1 inhibitor is a regulator of the complement alternative pathway. J. Exp. Med. 194, 1609–1616 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen, E. W. et al. Effect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement. Mol. Immunol. 44, 1819–1826 (2007).

    CAS  PubMed  Google Scholar 

  21. Rodriguez de Cordoba, S., Esparza-Gordillo, J., Goicoechea de Jorge, E., Lopez-Trascasa, M. & Sanchez-Corral, P. The human complement factor H: functional roles, genetic variations and disease associations. Mol. Immunol. 41, 355–367 (2004).

    CAS  PubMed  Google Scholar 

  22. Jarva, H., Jokiranta, T. S., Würzner, R. & Meri, S. Complement resistance mechanisms of streptococci. Mol. Immunol. 40, 95–107 (2003).

    CAS  PubMed  Google Scholar 

  23. Kim, D. D. & Song, W.-C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  24. Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444, 217–220 (2006).

    CAS  PubMed  Google Scholar 

  25. Inal, J. M. et al. Complement C2 receptor inhibitor trispanning: a novel human complement inhibitory receptor. J. Immunol. 174, 356–366 (2005).

    CAS  PubMed  Google Scholar 

  26. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 5, 981–986 (2004).

    CAS  Google Scholar 

  27. Kemper, C. & Atkinson, J. P. T-cell regulation: with complements from innate immunity. Nature Rev. Immunol. 7, 9–18 (2007).

    CAS  Google Scholar 

  28. Monk, P. N., Scola, A.-M., Madala, P. & Fairlie, D. P. Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152, 429–448 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  30. Sjöberg, A. P., Trouw, L. A. & Blom, A. M. Complement activation and inhibition: a delicate balance. Trends Immunol. 30, 83–90 (2009).

    PubMed  Google Scholar 

  31. Walport M. J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    CAS  PubMed  Google Scholar 

  32. Ward, P. A. The dark side of C5a in sepsis. Nature Rev. Immunol. 4, 133–142 (2004).

    CAS  Google Scholar 

  33. Manderson, A. P., Botto, M. & Walport, M. J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    CAS  PubMed  Google Scholar 

  34. Mitchell, D. A., Kirby, L., Paulin, S. M., Villiers, C. L. & Sim, R. B. Prion protein activates and fixes complement directly via the classical pathway: implications for the mechanisms of scrapie agent propagation in lymphoid tissue. Mol. Immunol. 44, 2997–3004 (2007).

    CAS  PubMed  Google Scholar 

  35. Bonifati, D. M. & Kishore, U. Role of complement in neurodegeneration and neuroinflammation. Mol. Immunol. 44, 999–1010 (2007).

    CAS  PubMed  Google Scholar 

  36. Baldwin, W. M. III, Kasper, E. K., Zachary, A. A., Wasowska, B. A. & Rodriguez, E. R. Beyond C4d: other complement-related diagnostic approaches to antibody-mediated rejection. Am. J. Transplant. 4, 311–318 (2004).

    CAS  PubMed  Google Scholar 

  37. Lin, T., Zhou, W. & Sacks, S. H. The role of complement and toll-like receptors in organ transplantation. Transplant. Int. 20, 481–489 (2007).

    CAS  Google Scholar 

  38. Cugno, M., Zanichelli, A., Foieni, F., Caccia, S. & Cicardi, M. C1 inhibitor deficiency and angioedema: molecular mehanisms and clinical progress. Trends Mol. Med. 15, 69–78 (2009).

    CAS  PubMed  Google Scholar 

  39. Fang, C. J., Richards, A., Liszewski, M. K., Kavanagh, D. & Atkinson, J. P. Advances in understanding of pathogenesis of aHUS and HELLP. Br. J. Haematol. 143, 336–348 (2008).

    CAS  PubMed  Google Scholar 

  40. Dragon-Durey, M.-A. & Fremeaux-Bacchi, V. Atypical haemolytic uraemic syndrome and mutations in complement regulator genes. Springer Semin. Immun. 27, 359–374 (2005).

    CAS  Google Scholar 

  41. Parker, C. J. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 373, 759–767 (2009).

    CAS  PubMed  Google Scholar 

  42. Wagner, E. & Frank, M. M. in Medical Immunology (eds Parslow, T. G., Stites, D. P., Terr, A. I. & Imboden, J. B.) 341–348 (McGraw-Hill, New York, 2001).

    Google Scholar 

  43. Sullivan, K. E. & Winkelstein J. A. in Immunologic Disorders in Infants and Children (eds Stiehm, E. R., Ochs, H. D. & Winkelstein, J. A.) 652–684 (Elsevier Saunders, Philadelphia, 2004). This chapter describes the clinical impact of all of the known complement deficiency states in humans for a better understanding of the impact of inhibiting specific complement components, especially in a chronic manner.

    Google Scholar 

  44. Garred, P., Larsen, F., Madsen, H. O & Koch, C. Mannose-binding lectin deficiency — revisited. Mol. Immunol. 40, 73–84 (2003).

    CAS  PubMed  Google Scholar 

  45. Eisen, D. P. & Minchinton, R. M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37, 1996–1505 (2003).

    Google Scholar 

  46. Jokiranta, T. S. et al. Where next with atypical hemolytic uremic syndrome? Mol. Immunol. 44, 3889–3900 (2007).

    CAS  PubMed  Google Scholar 

  47. Trouw, L. A., Roos, A. & Daha, M. R. Autoantibodies to complement components. Mol. Immunol. 38, 199–206 (2001).

    CAS  PubMed  Google Scholar 

  48. Agostoni, A. et al. Hereditary and acquired angioedema: proceedings of the third C1 inhibitor deficiency workshop and beyond. J. Allerg. Clin. Immunol. 114, S51–S131 (2004). This publication provides a comprehensive description of hereditary and acquired angioedema due to C1 inhibitor deficiency, including basic and clinical aspects of the disease.

    Google Scholar 

  49. Dragon-Durey, M. A. et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  50. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nature Biotech. 25, 1256–1264 (2007). This review describes the development of the C5-specific antibody currently approved for the treatment of PNH and results of experimental and clinical studies that have led to its use in a clinical setting.

    CAS  Google Scholar 

  51. Testa, L. et al. Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J. Thorac. Cardiovasc. Surg. 136, 884–893 (2008).

    CAS  PubMed  Google Scholar 

  52. Locke, J. E. et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am. J. Transplant. 9, 23123–23125 (2009).

    Google Scholar 

  53. Stegall, M. et al. Prevention of acute humoral rejection with C5 inhibition [abstract]. American Society of Transplantation Winter Symposium. (Banff, Alberta, Canada, 2009).

  54. Nürnberger, J. et al. Eculizumab for atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 542–544 (2009).

    PubMed  Google Scholar 

  55. Gruppo R. A. & Rother, R. P. Eculizumab for congenital atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 544–546 (2009).

    CAS  PubMed  Google Scholar 

  56. Dührsen, U. & Philipp, T. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood 113, 3885–3886 (2009).

    PubMed  Google Scholar 

  57. Ricklin, D. & Lambris, J. D. Complement-targeted therapeutics. Nature Biotech. 25, 1265–1275 (2008). An excellent review of complement-targeting agents with an emphasis on pharmacological development.

    Google Scholar 

  58. Epstein, T. G. & Bernstein, J. A. Current and emerging management options for hereditary angioedema. Drugs 68, 2561–2573 (2008).

    CAS  PubMed  Google Scholar 

  59. Caliezi, C. et al. C1-inhibitor in patients with severe sepsis and septic shock: beneficial effect on renal dysfunction. Crit. Care Med. 30, 1722–1728 (2002).

    CAS  PubMed  Google Scholar 

  60. Davis, A. E. III, Mejia, P. & Lu, F. Biological activities of C1 inhibitor Mol. Immunol. 45, 4057–4063 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Struber, M. et al. C1-esterase inhibitor in graft failure after lung transplantation. Intensive Care Med. 25, 1315–1318 (1999).

    CAS  PubMed  Google Scholar 

  62. Thielmann, M. et al. Administration of C1-esterase inhibitor during emergency coronary artery bypasses surgery in acute ST-elevation myocardial infarction. Eur. J. Cardiothorac. Surg. 30, 285–293 (2006).

    PubMed  Google Scholar 

  63. Fattouch, K. et al. Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction in patients who underwent surgical reperfusion: a randomised double-blind study. Eur. J. Cardiothorac. Surg. 32, 326–332 (2007).

    PubMed  Google Scholar 

  64. Baig, K. et al. Complement factor 1 inhibitor improves cardiopulmonary function in neonatal cardiopulmonary bypass. Ann. Thoracic Cardiovasc. Surg. 84, 1477–1482, (2007).

    Google Scholar 

  65. Asghar, S. S. & Pasch, M. C. Therapeutic inhibition of the complement system. Y2K update. Front. Biosci. 5, e63–e81 (2000).

    CAS  PubMed  Google Scholar 

  66. Jolles, S., Sewell, W. A. C. & Misbah, S. A. Clinical uses of intravenous immunoglobulin. Clin. Exp. Immunol. 142, 1–11 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Frank, M. M., Miletic, V. D. & Jiang, H. Immunoglobulin in the control of complement activation. Immunol. Res. 22, 137–146 (2000).

    CAS  PubMed  Google Scholar 

  68. Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Basta, M. Ambivalent effect of immunoglobulins on the complement system: activation versus inhibition. Mol. Immunol. 45, 4073–4079 (2008).

    CAS  PubMed  Google Scholar 

  70. Arumugan, T. V. et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl Acad. Sci. USA 104, 14104–14109 (2008).

    Google Scholar 

  71. Weisman, H. F. et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146–151 (1990). This paper describes the design of a complement-modulating agent based on a known complement regulator and proves its efficacy in a murine model of myocardial infarction.

    CAS  PubMed  Google Scholar 

  72. Lazar, H. L. et al. Soluble human complement receptor 1 limits ischemic damage in cardiac surgery patients at high risk requiring cardiopulmonary bypass. Circulation 110 (suppl. II), 274–279 (2004).

    Google Scholar 

  73. Li, J. S., Jaggers, J. & Anderson, P. A. The use of TP10, soluble complement receptor 1, in cardiopulmonary bypass. Expert Rev. Cardiovasc. Ther. 4, 649–654 (2006).

    CAS  PubMed  Google Scholar 

  74. Mocco, J. et al. Preclinical evaluation of the neuroprotective effect of soluble complement receptor type 1 in a nonhuman primate model of reperfused stroke. J. Neurosurg. 105, 595–601 (2006).

    CAS  PubMed  Google Scholar 

  75. Yazdanbakhsh, K. Development of complement therapeutics for inhibition of immune-mediated red cell destruction. Transfusion 45, S122–S129 (2005).

    Google Scholar 

  76. Patel, H., Smith, A. G., Sacks, S. H. & Zhou, W. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J. Am. Soc. Nephrol. 17, 1102–1111 (2006).

    CAS  PubMed  Google Scholar 

  77. Williams, A. S., Linton, S. M. & Morgan B. P. Coupling complement regulators to immunoglobulin domains generates effective anti-complement reagents with extended half-life in vivo. Clin. Exp. Immunol. 129, 198–207 (2002).

    PubMed  PubMed Central  Google Scholar 

  78. Leinhase, I. et al. Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp. Neurol. 199, 454–464 (2006).

    CAS  PubMed  Google Scholar 

  79. Hepburn, N. J. et al. Prevention of experimental autoimmune myasthenia gravis by rat Crry-Ig: a model agent for long-term complement inhibition in vivo. Mol. Immunol. 45, 395–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, Y., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. J. Immunol. 181, 8068–8076 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Katschke, K. Jr et al. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J. Exp. Med. 204, 1319–1325 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Song, H. et al. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation. J. Clin. Invest. 111, 1875–1885 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Atkinson, C., Qiao, F., Song, H., Gilkeson, G. S. & Tomlinson, S. Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J. Immunol. 180, 1231–1238 (2008).

    CAS  PubMed  Google Scholar 

  84. Bergmann-Leitner, E. S., Leitner, W. W. & Tsokos, G. C. Complement 3d: from molecular adjuvant to target of immune escape mechanisms. Clin. Immunol. 121, 177–185 (2006).

    CAS  PubMed  Google Scholar 

  85. Bergmann-Leitner, E. S. et al. C3d-defined complement receptor-binding peptide p28 conjugated to circumsporozoite protein provides protection against Plasmodium berghei. Vaccine 25, 7732–7736 (2007).

    CAS  PubMed  Google Scholar 

  86. Whipple, E. C. et al. Low doses of antigen coupled to anti-CR2 mAbs induce rapid and enduring IgG immune responses in mice and cynomolgous monkeys. Mol. Immunol. 44, 377–388 (2007).

    CAS  PubMed  Google Scholar 

  87. Sprong, T. et al. Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis. Blood 102, 3702–3710 (2003).

    CAS  PubMed  Google Scholar 

  88. Holmer, M. Genentech makes its first ever acquisition. Nature Biotech. 25, 4–5 (2007).

    Google Scholar 

  89. Thurman, J. M. et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 17, 707–715 (2006).

    CAS  PubMed  Google Scholar 

  90. Leinhase, I. et al. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J. Neuroinflamm. 4, 13–25 (2007).

    Google Scholar 

  91. Taube, C. et al. Factor B of the alternative complement pathway regulates development of airway hyperresponsiveness and inflammation. Proc. Natl Acad. Sci. USA 103, 8084–8089 (2003).

    Google Scholar 

  92. Katschke, K. J. et al. Structural and functional analysis of a C3b-specific antibody that selectively inhibits the alternative pathway of complement. J. Biol. Chem. 284, 10473–10479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Biesecker, G., Dihel, L., Enney, K. & Bendele, R. A. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42, 219–230 (1999).

    CAS  Google Scholar 

  94. Holland, M. C., Morikis, D. & Lambris, J. D. Synthetic small-molecule complement inhibitors. Curr. Opin. Investig. Drugs 5, 1164–1173 (2004).

    CAS  PubMed  Google Scholar 

  95. Janssen, B. J., Halff, E. F., Lambris, J. D. & Gros, P. Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition, J. Biol. Chem. 282, 29241–29247 (2007).

    CAS  PubMed  Google Scholar 

  96. Köhl, J. Drug evaluation: the C5a receptor antagonist PMX-53. Curr. Opin. Mol. Ther. 8, 529–538 (2006).

    PubMed  Google Scholar 

  97. Vergunst, C. E. et al. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatol. 46, 1773–1778 (2007).

    CAS  Google Scholar 

  98. Marom, Z., Shelhamer, J., Berger, M., Frank, M. M. & Kaliner, M. Anaphylatoxin C3a enhances mucous glycoprotein release from human airways in vitro. J. Exp. Med. 161, 657–668 (1985).

    CAS  PubMed  Google Scholar 

  99. Drouin, S. M., Corry, D. B., Hollman, T. J., Kildsgaard, J. & Wetsel, R. A. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J. Immunol. 169, 5926–5933 (2002).

    CAS  PubMed  Google Scholar 

  100. Drouin, S. M., Corry, D. B., Kildsgaard, J. & Wetsel, R. A. Cutting edge: the absence of C3 demonstrates a role for complement in Th2 effector functions in a murine model of pulmonary allergy. J. Immunol. 67, 4141–4144 (2001).

    Google Scholar 

  101. Wills-Karp, M. Complement activation pathways. A bridge between innate and adaptive immune responses in asthma. Proc. Am. Thorac. Soc. 4, 247–251 (2007). This review describes the experimental evidence of the dual role of complement in asthma through anaphylatoxins C3a and C5a.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mathieu, M.-C. et al. The C3a receptor antagonist SB 290157 has agonist activity. Immunol. Lett. 100, 139–145 (2005).

    CAS  PubMed  Google Scholar 

  103. Ratajczak, J. et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 103, 2071–2078 (2004).

    CAS  PubMed  Google Scholar 

  104. von Zabern, I. in Activators and Inhibitors of Complement (ed. Sim, R. B.) 127–135 (Kluwer Academic Publishers., Dordrecht, 1993).

    Google Scholar 

  105. Younger, J. G. et al. Systemic and lung physiological changes in rats after intravascular activation of complement. J. Appl. Physiol. 90, 2289–2295 (2001).

    CAS  PubMed  Google Scholar 

  106. Fritzinger, D. C. et al. Functional characterization of human C3/cobra venom factor hybrid proteins for therapeutic complement depletion. Mol. Immunol. 33, 105–116 (2009).

    CAS  Google Scholar 

  107. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nature Rev. Microbiol. 6, 132–142 (2008). This review provides detailed information on the mechanisms used by microorganisms to avoid complement-mediated elimination that could be exploited as complement therapeutics.

    CAS  Google Scholar 

  108. Jongerius, I. et al. Staphylococcal complement evasion by various convertase-blocking molecules. J. Exp. Med. 204, 2461–2471 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Thorgersen, E. B. et al. Inhibition of complement and CD14 attenuates the Escherichia coli-induced inflammatory response in porcine whole blood. Infect. Immun. 77, 725–732 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Liszewski, M. K. et al. Smallpox inhibitor of complement enzymes (SPICE): regulation of complement activation on cells and mechanisms of its cellular attachment. J. Immunol. 181, 4199–4207 (2009). This recent article provides an improved understanding of the mechanism of action of complement inhibitors expressed by smallpox viruses, which is invaluable to the design of novel complement-targeting agents.

    Google Scholar 

  111. Osofsky, S. G., Thompson, B. H., Lint, T. F. & Gewurz, H. Hereditary deficiency of the third component of complement in a child with fever, skin rash, and arthralgias: response to transfusion of whole blood. J. Pediatr. 90, 180–186 (1977).

    CAS  PubMed  Google Scholar 

  112. Valdimarsson, H. Infusion of plasma-derived mannan-binding lectin (MBL) into MBL-deficient humans. Biochem. Soc. Trans. 31, 768–769 (2003).

    CAS  PubMed  Google Scholar 

  113. Petersen, K. A. et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J. Clin. Immunol. 26, 465–475 (2006).

    CAS  PubMed  Google Scholar 

  114. Casanova, J.-L. & Abel, L. Human mannose-binding lectin in immunity: friend, foe, or both? J. Exp. Med. 199, 1295–1299 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bureeva, S., Andia-Pravdivy, J. & Kaplun, A. Drug design using the example of the complement system inhibitor's development. Drugs Discov. Today 10, 1535–1542 (2005).

    CAS  Google Scholar 

  116. Hamilton, S. R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006). This study shows that the pichia yeast system can be used to massively produce glycoproteins bearing terminal sugars as expressed in humans, possibly paving the way to large-scale, cost-efficient production of recombinant human complement proteins.

    CAS  PubMed  Google Scholar 

  117. Beinrohr, L., Dobó, J., Zavódszky, P. & Gál, P. C1, MBL-MASPs and C1 inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol. Med. 14, 511–521 (2008).

    CAS  PubMed  Google Scholar 

  118. Trapp, R. G., Fletcher, M., Forristal, J. & West, C. D. C4 binding protein deficiency in a patient with atypical Behcet's disease. J. Rheumatol. 14, 135–138 (1987).

    CAS  PubMed  Google Scholar 

  119. Pickering, M. C. & Cook, H. T. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals. Clin. Exp. Immunol. 151, 210–230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Reis, E. S., Falcao, D. A. & Isaac, L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand. J. Immunol. 63, 155–168 (2006).

    CAS  Google Scholar 

  121. Herbert, A. et al. Structure shows glycosaminoglycan- and protein-recognition site in factor H is perturbed by age-related macular degeneration-linked SNP. J. Biol. Chem. 282, 18960–18968 (2007).

    CAS  PubMed  Google Scholar 

  122. Kavanagh, D, Richards, A. & Atkinson, J. P. Complement regulatory genes and haemolytic uremic syndromes. Annu. Rev. Med. 59, 293–309 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

http://www.ncbi.nlm.nih.gov/gene

OMIM

http://www.ncbi.nlm.nih.gov/omim

idiopathic thrombocytopenic purpura

Kawasaki disease

membranoproliferative glomerulonephritis

Glossary

Age-related macular degeneration

The principal cause of blindness in the elderly in industrialized countries. It is characterized by a loss of retinal pigment epithelium and photoreceptors, and deposits of proteins and lipids (drusen) or neovascularization.

Innate immune system

Innate immunity is said to be nonspecific, but many of its components, including complement, recognize pathogen associated molecular patterns (PAMPs) for initiation of a defence reaction.

Anaphylatoxins

Small peptides derived from C3 and C5 cleavage that promote inflammation by inducing leukocyte chemotaxis and increasing vascular permeability, among other activities.

Kinin pathway

Triggers the generation of bradykinin, a potent vasoactive peptide, upon activation of the contact system of the coagulation cascade.

Decay-accelerating activity

Shortening of the half-lives of convertases of the complement activation cascade by CR1 and DAF by accelerated dissociation of their components.

Immunological memory

The ability of the immune system to recognize and respond rapidly and vigorously to a specific antigen with which it has previously had contact.

Opsonization

Coating of an organism with complement fragments that leads to recognition by specific receptors on phagocytes and elimination by phagocytosis.

Systemic lupus erythematosus

A prototypical autoimmune disease characterized by the presence of antibodies directed against intracellular antigens (for example, DNA) that form immune complexes causing inflammation at sites of deposition such as the skin, joints and kidneys.

Ischaemia–reperfusion injury

A condition that arises upon restoration of blood flow in an organ deprived of oxygen supply.

Hereditary angioedema

Condition that is manifested by recurrent episodes of skin swelling and abdominal pain; may be fatal if swelling affects the larynx.

Atypical haemolytic uraemic syndrome

Renal pathology manifested by a triad of microangiopathic haemolytic anaemia, thrombocytopaenia and acute renal failure. It can be sporadic or familial.

Hyperacute rejection

This occurs within minutes of revascularization of the organ graft and is caused by complement-activating pre-formed antibodies reacting against endothelial cells. By contrast, acute rejection occurs within the first weeks following transplantation because of elicited antibodies.

Cell homing

The process by which haematopoietic stem and progenitor cells are contained within the bone marrow and travel to this site when transplanted.

Regulator of complement activation protein family

These include factor H, C4BP, DAF, MCP, CR1 and CR2. They share a common structure consisting of a number of repetitive units of 60 amino acids called short consensus repeats, or complement control protein modules, which contain binding sites for activated complement proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, E., Frank, M. Therapeutic potential of complement modulation. Nat Rev Drug Discov 9, 43–56 (2010). https://doi.org/10.1038/nrd3011

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd3011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing