Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets

Key Points

  • Ubiquitin is a highly conserved 76 amino-acid protein that covalently attaches to protein substrates targeted for degradation by the 26S proteasome. The coordinated effort of a series of enzymes, including an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3), uses ATP to ultimately form an isopeptide bond between ubiquitin and a substrate.

  • Another class of enzymes called deubiquitylating enzymes (DUBs) deconstruct these linkages and also have an essential role in ubiquitin function. In addition, ubiquitin-like proteins (UBLs), including NEDD8, SUMO and ISG15, share a characteristic three-dimensional fold with ubiquitin but have their own dedicated enzyme cascades and distinct (although sometimes overlapping) biological functions.

  • The ubiquitin–proteasome system (UPS) and UBL conjugation pathways have important roles in various human diseases, including numerous types of cancer, cardiovascular disease, viral diseases and neurodegenerative disorders. The proteasome inhibitor bortezomib (Velcade; Millennium Pharmaceuticals) is the first clinically validated drug to target the UPS and is approved for the treatment of multiple myeloma. This suggests that other diseases may conceivably be targeted by modulating components of the UPS and UBL conjugation pathways using small-molecule inhibitors.

  • A significant hurdle to identifying drug-like inhibitors of enzyme targets within the UPS and UBL conjugation pathways is the limited understanding of the molecular mechanisms and biological consequences of UBL conjugation.

  • Here, we provide an overview of the enzyme classes in the UPS and UBL pathways that are potential therapeutic targets, and highlight considerations that are important for drug discovery. We also discuss the progress in the development of small-molecule inhibitors, and review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention.

Abstract

The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis. The growing recognition of the fundamental importance of these pathways to normal cell function and in disease has prompted an in-depth search for small-molecule inhibitors that selectively block the function of these pathways. However, our limited understanding of the molecular mechanisms and biological consequences of UBL conjugation is a significant hurdle to identifying drug-like inhibitors of enzyme targets within these pathways. Here, we highlight recent advances in understanding the role of some of these enzymes and how these new insights may be the key to developing novel therapeutics for diseases including immuno-inflammatory disorders, cancer, infectious diseases, cardiovascular disease and neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the enzymatic cascade involved in ubiquitin-like protein (UBL) conjugation and the ubiqitin–proteasome system (UPS).
Figure 2: Mechanisms of E1 inhibitors identified in studies of different ubiquitin-like protein (UBL) pathways.
Figure 4: Molecular interactions of E2s suggest potential modes of inhibition.
Figure 3: Structural differences among various types of E3 ligases.
Figure 5: Ubiquitin and signalling to nuclear factor-κB (NF-κB).
Figure 6: Protein quality control and neurodegeneration.

Similar content being viewed by others

References

  1. Ciechanover, A, & Schwartz, A. L. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl Acad. Sci. USA 95, 2727–2730 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoeller, D, & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    CAS  PubMed  Google Scholar 

  3. Lehman, N. L. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 118, 329–347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Corn, P. G. Role of the ubiquitin proteasome system in renal cell carcinoma. BMC Biochem. 8, S4 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. Herrmann, J., Ciechanover, A., Lerman, L. O. & Lerman, A. The ubiquitin–proteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc. Res. 61, 11–21 (2004).

    CAS  PubMed  Google Scholar 

  6. Petroski, M. D. The ubiquitin system, disease, and drug discovery. BMC Biochem. 9, S7 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    CAS  PubMed  Google Scholar 

  8. Chiu, Y. H., Sun, Q. & Chen, Z. J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007).

    CAS  PubMed  Google Scholar 

  9. Haglund, K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    CAS  PubMed  Google Scholar 

  10. Haglund, K., & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    CAS  PubMed  Google Scholar 

  12. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nature Rev. Mol. Cell Biol. 10, 550–563 (2009).

    CAS  Google Scholar 

  13. Sun, Y. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol. Ther. 2, 623–629 (2003).

    CAS  PubMed  Google Scholar 

  14. Singhal, S., Taylor, M. C. & Baker, R. T. Deubiquitylating enzymes and disease. BMC Biochem. 9, S3 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Rev. Mol. Cell Biol. 10, 319–331 (2009).

    CAS  Google Scholar 

  16. Bohnsack, R. N. & Haas, A. L. Conservation in the mechanism of NEDD8 activation by the human AppBp1–Uba3 heterodimer. J. Biol. Chem. 278, 26823–26830 (2003).

    CAS  PubMed  Google Scholar 

  17. Huang, D. T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nature Struct. Mol. Biol. 11, 927–935 (2004).

    CAS  Google Scholar 

  18. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nature Rev. Mol. Cell Biol. 10, 755–764 (2009).

    CAS  Google Scholar 

  19. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    PubMed  Google Scholar 

  20. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009). The structure of K63-linked and linear ubiquitin dimers, and the specificity of various DUBs and UBDs, highlight the specificity within the ubiquitin system.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. David, Y., Ziv, T., Admon, A. & Navon, A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 285, 8595–8604 (2010). Uses a systematic approach to evaluate the role of E2 enzymes in determining the topology of the different polyubiquitin chains. The analysis shows that E2s are capable of directing chain formation to distinct subsets of ubiquitin lysines independently of an E3 enzyme.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. van Wijk, S. J., & Timmers, H. T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010).

    CAS  PubMed  Google Scholar 

  23. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    CAS  Google Scholar 

  24. Aghajan, M. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotech. 28, 738–742 (2010).

    CAS  Google Scholar 

  25. Orlicky, S. et al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nature Biotech. 28, 733–737 (2010).

    CAS  Google Scholar 

  26. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  PubMed  Google Scholar 

  27. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009). This systematic investigation of DUB function uses proteomic analysis of DUBs and their associated protein complexes to identify over 750 candidate interacting proteins associated with 75 DUBs, providing the first glimpse into the global DUB interaction landscape.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bianchi, K. & Meier, P. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36, 736–742 (2009).

    CAS  PubMed  Google Scholar 

  29. Chen, Z. J. & Sun, L. J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    CAS  PubMed  Google Scholar 

  30. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009). NF-κB is a key transcription factor for inflammatory, anti-apoptotic and immune processes and is regulated by the ubiquitin pathway. The LUBAC E3 ligase complex is composed of two RING finger proteins (HOIL-1L and HOIP), forms head-to-tail-linked linear ubiquitin chains and activates NF-κB, suggesting a physiological function for this recently identified form of polyubiquitin.

    CAS  PubMed  Google Scholar 

  31. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    CAS  PubMed  Google Scholar 

  32. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    CAS  PubMed  Google Scholar 

  33. Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885–2895 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaux, D. L. & Silke, J. IAPs, RINGs and ubiquitylation. Nature Rev. Mol. Cell Biol. 6, 287–297 (2005).

    CAS  Google Scholar 

  36. Chen, A. et al. The HECT-type E3 ubiquitin ligase AIP2 inhibits activation-induced T-cell death by catalyzing EGR2 ubiquitination. Mol. Cell. Biol. 29, 5348–5356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29, 451–464 (2008).

    CAS  PubMed  Google Scholar 

  38. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Google Scholar 

  39. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Vereecke, L., Beyaert, R. & van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

    CAS  PubMed  Google Scholar 

  41. Hymowitz, S. G. & Wertz, I. E. A20: from ubiquitin editing to tumour suppression. Nature Rev. Cancer 10, 332–341 (2010).

    CAS  Google Scholar 

  42. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    CAS  PubMed  Google Scholar 

  44. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).

    CAS  Google Scholar 

  45. Declercq, W., Vanden, B. T. & Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 138, 229–232 (2009).

    CAS  PubMed  Google Scholar 

  46. Xu, J. et al. NF-κB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev. 20, 7–17 (2009).

    CAS  PubMed  Google Scholar 

  47. Dreger, H. et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc. Res. 83, 354–361 (2009).

    CAS  PubMed  Google Scholar 

  48. Tsukamoto, O., Minamino, T. & Kitakaze, M. Functional alterations of cardiac proteasomes under physiological and pathological conditions. Cardiovasc. Res. 85, 339–346 (2010).

    CAS  PubMed  Google Scholar 

  49. Yu, X. & Kem, D. C. Proteasome inhibition during myocardial infarction. Cardiovasc. Res. 85, 312–320 (2010).

    CAS  PubMed  Google Scholar 

  50. Sohns, W., van Veen, T. A. & van der Heyden, M. A. Regulatory roles of the ubiquitin-proteasome system in cardiomyocyte apoptosis. Curr. Mol. Med. 10, 1–13 (2010).

    CAS  PubMed  Google Scholar 

  51. Enrico, O. et al. Unexpected cardiotoxicity in haematological bortezomib treated patients. Br. J. Haematol. 138, 396–397 (2007).

    PubMed  Google Scholar 

  52. Luo, H., Wong J. & Wong, B. Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc. Res. 85, 347–356 (2010).

    CAS  PubMed  Google Scholar 

  53. Chen, P. C. et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909–10919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Haas, K. F. & Broadie, K. Roles of ubiquitination at the synapse. Biochim. Biophys. Acta 1779, 495–506 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dawson, T. M. & Dawson, V. L. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 25, S32–S39 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Dawson, T. M. Parkin and defective ubiquitination in Parkinson's disease. J. Neural Transm. Suppl. 209–213 (2006).

  57. Bedford, L. et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 28, 8189–8198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bedford, L. et al. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim. Biophys. Acta 1782, 683–690 (2008).

    CAS  PubMed  Google Scholar 

  59. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  60. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  61. Bedford, L. et al. The UPS and autophagy in chronic neurodegenerative disease: six of one and half a dozen of the other — or not? Autophagy 5, 224–227 (2009).

    CAS  PubMed  Google Scholar 

  62. Matsuda, N. & Tanaka, K. Does impairment of the ubiquitin-proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson's disease? J. Alzheimers Dis. 19, 1–9 (2010).

    CAS  PubMed  Google Scholar 

  63. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    CAS  PubMed  Google Scholar 

  64. Rusten, T. E., Filimonenko, M., Rodahl, L. M., Stenmark, H. & Simonsen, A. ESCRTing autophagic clearance of aggregating proteins. Autophagy 4, 233–236 (2007).

    Google Scholar 

  65. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Paine, S. et al. Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci. Lett. 460, 205–208 (2009).

    CAS  PubMed  Google Scholar 

  67. McGowan, E., Eriksen, J. & Hutton, M. A decade of modeling Alzheimer's disease in transgenic mice. Trends Genet. 22, 281–289 (2006).

    CAS  PubMed  Google Scholar 

  68. Melrose, H. L., Lincoln, S. J., Tyndall, G. M. & Farrer, M. J. Parkinson's disease: a rethink of rodent models. Exp. Brain Res. 173, 196–204 (2006).

    PubMed  Google Scholar 

  69. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010). USP14, a proteasome-associated DUB, is shown to inhibit the degradation of ubiquitin–protein conjugates by trimming ubiquitin chains. A small-molecule inhibitor of USP14's DUB activity enhances the degradation of proteasome substrates in cells, including some implicated in neurodegenerative disease, suggesting a potential strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nature Rev. Drug Discov. 6, 304–312 (2007).

    CAS  Google Scholar 

  71. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    CAS  PubMed  Google Scholar 

  72. Zhu, G., Wu, C. J. Zhao, Y. & Ashwell, J. D. Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17, 1438–1443 (2007).

    CAS  PubMed  Google Scholar 

  73. Orlowski, R. Z. & Kuhn, D. J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14, 1649–1657 (2008).

    CAS  PubMed  Google Scholar 

  74. Lesniak, M. S. & Brem, H. Targeted therapy for brain tumours. Nature Rev. Drug Discov. 3, 499–508 (2004).

    CAS  Google Scholar 

  75. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    CAS  PubMed  Google Scholar 

  76. Hingamp, P. M., Arnold, J. E., Mayer, R. J. & Dixon, L. K. A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO J. 11, 361–366 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu, Y. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1302–1308 (2008).

    CAS  Google Scholar 

  78. Edelmann, M. J. & Kessler, B. M. Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: emerging patterns and molecular principles. Biochim. Biophys. Acta 1782, 809–816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chang, T. H. et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog. 5, e1000493 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    CAS  PubMed  Google Scholar 

  81. Kyei, G. B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186, 255–268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Harty, R. N., Pitha, P. M. & Okumura, A. Antiviral activity of innate immune protein ISG15. J. Innate Immunol. 1, 397–404 (2009).

    CAS  Google Scholar 

  83. Zheng, Y. T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916 (2009).

    CAS  Google Scholar 

  84. Thurston, T. L., Ryzhakov G., Bloor S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunol. 10, 1215–1221 (2009). NDP52, a factor previously not known to contribute to innate immunity, is shown to activate autophagy against invading bacteria by collaborating with the ubiquitin system.

    CAS  Google Scholar 

  85. Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biol. 11, 1233–1240 (2009).

    CAS  PubMed  Google Scholar 

  86. Burns, K. E., Pearce, M. J. & Darwin, K. H. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J. Bacteriol. 192, 2933–2935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. World Health Organization. Fact sheet N. °104: Tuberculosis. WHO website [online], (2010).

  88. Darwin, K. H., Ehrt, S., Gutierrez-Ramos, J. C., Weich, N. & Nathan, C. F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).

    CAS  PubMed  Google Scholar 

  89. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008). In Mtb, Pup is specifically conjugated to proteasome substrates, revealing a bacterial system that uses small-protein modifiers to control protein stability. Pup is essential for the pathogenesis of Mtb, suggesting that the various components of the Pupylation system may present opportunities for therapeutic intervention.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cerda-Maira, F. A. et al. Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol. Microbiol. 77, 1123–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Burns, K. E. et al. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 39, 821–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, T. et al. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17, 1377–1385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin, G. et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59, 1405–1416 (2006).

    CAS  PubMed  Google Scholar 

  94. Hu, G. et al. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59, 1417–1428 (2006).

    CAS  PubMed  Google Scholar 

  95. Lin, G., Tsu, C., Dick, L., Zhou, X. K. & Nathan, C. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates. J. Biol. Chem. 283, 34423–34431 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin, G. et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461, 621–626 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Walsh, R. C. et al. Proteasome inhibitor-based primary therapy for antibody-mediated renal allograft rejection. Transplantation 89, 277–284 (2010). Relates the initial experience of using proteasome inhibition as first-line therapy to treat refractory antibody-mediated rejection (AMR). The results suggest that proteasome inhibitor-based combination therapy may provide a means for rapid donor-specific anti-human leukocyte antigen antibodies elimination in early acute AMR in renal transplant recipients.

    CAS  PubMed  Google Scholar 

  98. Borissenko, L. & Groll, M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev. 107, 687–717 (2007).

    CAS  PubMed  Google Scholar 

  99. Demo, S. D. et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383–6391 (2007).

    CAS  PubMed  Google Scholar 

  100. Zhou, H. J. et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J. Med. Chem. 52, 3028–3038 (2009).

    CAS  PubMed  Google Scholar 

  101. Roccaro, A. M. et al. Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in Waldenstrom macroglobulinemia. Blood. 115 4051–4060 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chauhan, D. et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419 (2005).

    CAS  PubMed  Google Scholar 

  103. Kupperman, E. et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70, 1970–1980 (2010).

    CAS  PubMed  Google Scholar 

  104. Piva, R. et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111, 2765–2775 (2008).

    CAS  PubMed  Google Scholar 

  105. Dick, L. R. & Fleming, P. E. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today 15, 243–249 (2010).

    CAS  PubMed  Google Scholar 

  106. Dorsey, B. D. et al. Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J. Med. Chem. 51, 1068–1072 (2008).

    CAS  PubMed  Google Scholar 

  107. Muchamuel, T. et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Med. 15, 781–787 (2009).

    CAS  PubMed  Google Scholar 

  108. Kuhn, D. J. et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113, 4667–4676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    CAS  PubMed  Google Scholar 

  110. Xu, G. W. et al. The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115, 2251–2259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kitagaki, J. et al. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53. Oncogene 28, 619–624 (2009).

    CAS  PubMed  Google Scholar 

  112. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009). The NEDD8 conjugation pathway controls the activity of the cullin-RING ligases and regulates the turnover of a large subset of proteins targeted for degradation by the proteasome. MLN4924, a selective inhibitor of the NEDD8-activating enzyme, blocks cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by the deregulation of S-phase DNA synthesis.

    CAS  PubMed  Google Scholar 

  113. Soucy, T. A., Smith, P. G. & Rolfe, M. Targeting NEDD8-activated cullin-RING ligases for the treatment of cancer. Clin. Cancer Res. 15, 3912–3916 (2009).

    CAS  PubMed  Google Scholar 

  114. Chiba, T. & Tanaka, K. Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Curr. Protein Pept. Sci. 5, 177–184 (2004).

    CAS  PubMed  Google Scholar 

  115. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Traore, T. et al. Pre-clinical antitumor activity of MLN4924, an inhibitor of NEDD8-activating enzyme (NAE), in a novel primary human DLBCL xenograft model. Blood 114, 382a (2009).

    Google Scholar 

  117. Swords, R. T. et al. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 115, 3796–3800 (2010).

    CAS  PubMed  Google Scholar 

  118. Brownell, J. E. et al. Substrate-assisted inhibition of ubiquitin-like protein activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37, 102–111 (2010).

    CAS  PubMed  Google Scholar 

  119. Maeda, H. et al. Ubiquitin-conjugating enzyme UBE2Q2 suppresses cell proliferation and is down-regulated in recurrent head and neck cancer. Mol. Cancer Res. 7, 1553–1562 (2009).

    CAS  PubMed  Google Scholar 

  120. Duan, X., Trent, J. O. & Ye, H. Targeting the SUMO E2 conjugating enzyme Ubc9 interaction for anti-cancer drug design. Anticancer Agents Med. Chem. 9, 51–54 (2009).

    CAS  PubMed  Google Scholar 

  121. Mo, Y. Y. & Moschos, S. J. Targeting Ubc9 for cancer therapy. Expert Opin. Ther. Targets 9, 1203–1216 (2005).

    CAS  PubMed  Google Scholar 

  122. Zhu, S. Sachdeva, M., Wu, F., Lu, Z. & Mo, Y. Y. Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29, 1763–1772 (2010).

    CAS  PubMed  Google Scholar 

  123. Hao, J. et al. Elevated expression of UBE2T in lung cancer tumors and cell lines. Tumour Biol. 29, 195–203 (2008).

    CAS  PubMed  Google Scholar 

  124. van Ree, J. H., Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J. Cell Biol. 188, 83–100 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, S. et al. Association of clinicopathological features with UbcH10 expression in colorectal cancer. J. Cancer Res. Clin. Oncol. 136, 419–426 (2010).

    CAS  PubMed  Google Scholar 

  126. Huang, A. et al. E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity. J. Mol. Biol. 385, 507–519 (2009).

    CAS  PubMed  Google Scholar 

  127. Das, R. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Reyes-Turcu, F. E., Ventii, K. H. & Wilkinson, K. D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    CAS  PubMed  Google Scholar 

  130. Love, K. R., Catic, A., Schlieker, C. & Ploegh, H. L. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nature Chem. Biol. 3, 697–705 (2007).

    CAS  Google Scholar 

  131. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).

    CAS  PubMed  Google Scholar 

  132. Masuya, D. et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol. 208, 724–732 (2006).

    CAS  PubMed  Google Scholar 

  133. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    CAS  PubMed  Google Scholar 

  134. Liu, Y. et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).

    CAS  PubMed  Google Scholar 

  135. Daviet, L. & Colland, F. Targeting ubiquitin specific proteases for drug discovery. Biochimie 90, 270–283 (2008).

    CAS  PubMed  Google Scholar 

  136. Ghosh, A. K. et al. Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome-coronavirus papain-like protease. J. Med. Chem. 52, 5228–5240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ratia, K. et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl Acad. Sci. USA 105, 16119–16124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sierra, M. I., Wright, M. H. & Nash, P. D. AMSH interacts with ESCRT-0 to regulate the stability and trafficking of CXCR4. J. Biol. Chem. 285, 13990–14004 (2010). The role of the JAMM domain deubiquitinating enzyme AMSH in the regulation of the endocytic sorting and down-regulation of the chemokine receptor CXCR4 was investigated. Reversible ubiquitylation modulates the activity of the endocytic machinery, suggesting that AMSH may directly regulate endocytic adaptor protein function by specifying the fate of endocytosed receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tatsumi, K. et al. A novel type of E3 ligase for the Ufm1 conjugation system. J. Biol. Chem. 285, 5417–5427 (2010).

    CAS  PubMed  Google Scholar 

  140. Wertz, I. E. & Dixit, V. M. Signalling to NF-κB: regulation by ubiquitin. Cold Spring Harb. Perspect. Biol. 2, a003350 (2010).

    PubMed  PubMed Central  Google Scholar 

  141. Gautheron, J. & Courtois, G. “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-κB activation. Cell. Mol. Life Sci. 67, 3101–3113 (2010).

    CAS  PubMed  Google Scholar 

  142. Herrmann, J., Lerman, L. O. & Lerman, A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res. 100, 1276–1291 (2007).

    CAS  PubMed  Google Scholar 

  143. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, Z. et al. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J. Biol. Chem. 279, 16000–16006 (2004).

    CAS  PubMed  Google Scholar 

  145. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  PubMed  Google Scholar 

  146. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    CAS  PubMed  Google Scholar 

  147. Gopal, Y. N., Chanchorn, E. & Van Dyke, M. W. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol. Cancer Ther. 8, 552–562 (2009).

    CAS  PubMed  Google Scholar 

  148. Cardozo, T. & Pagano, M. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochem. 8, S9 (2007).

    PubMed  PubMed Central  Google Scholar 

  149. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18, 849–854 (1999).

    CAS  PubMed  Google Scholar 

  150. Read, M. A. et al. NEDD8 modification of cul-1 activates SCF(beta(TrCP)-dependent ubiquitination of IκBα. Mol. Cell Biol. 20, 2326–2333 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Srinivasula, S. M. & Ashwell, J. D. IAPs: what's in a name? Mol. Cell 30, 123–135 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Galban, S. & Duckett, C. S. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ. 17, 54–60 (2010).

    CAS  PubMed  Google Scholar 

  153. Neil, J. R., Tian, M. & Schiemann, W. P. X-linked inhibitor of apoptosis protein and its E3 ligase activity promote transforming growth factor-β-mediated nuclear factor-κB activation during breast cancer progression. J. Biol. Chem. 284, 21209–21217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Carter, B. Z. et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood 111, 3742–3750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Carter, B. Z. et al. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 115, 306–314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cummings, J. et al. Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP. Br. J. Cancer. 95, 42–48 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sanduja, S., Kaza, V. & Dixon, D. A. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging (Albany NY). 1, 803–817 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15, 74–77 (1997).

    CAS  PubMed  Google Scholar 

  159. Rathmell, W. K. & Chen S. VHL inactivation in renal cell carcinoma: implications for diagnosis, prognosis and treatment. Expert Rev. Anticancer Ther. 8, 63–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Paltoglou, S. & Roberts, B. J. HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 26, 604–609 (2007).

    CAS  PubMed  Google Scholar 

  161. van Hagen, M., Overmeer, R. M., Abolvardi, S. S. & Vertegaal, A. C. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated hypoxia-inducible factor-2α. Nucleic Acids Res. 38, 1922–1931 (2010).

    CAS  PubMed  Google Scholar 

  162. Sufan, R. I. et al. Oxygen-independent degradation of HIF-alpha via bioengineered VHL tumour suppressor complex. EMBO Mol. Med. 1, 66–78 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Nakamura, T. & Lipton, S. A. Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14, 455–468 (2009).

    CAS  PubMed  Google Scholar 

  164. Alchanati, I. et al. The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex — a potentially new drug target. PLoS One 4, e8104 (2009).

    PubMed  PubMed Central  Google Scholar 

  165. Adams, J. The proteasome: a suitable antineoplastic target. Nature Rev. Cancer. 4, 349–360 (2004).

    CAS  Google Scholar 

  166. Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417–421 (2004).

    CAS  PubMed  Google Scholar 

  167. Altun, M. et al. Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res. 65, 7896–7901 (2005).

    CAS  PubMed  Google Scholar 

  168. Kuhn, D. J. et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110, 3281–3290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Feling, R. H. et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed Engl. 42, 355–357 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Hill and N. Beavan of FireKite for assistance in the development of this manuscript. L.B., J.L. and R.J.M. thank the Alzheimer's Research Trust and Parkinson's UK for generous support of some of the work reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Brownell.

Ethics declarations

Competing interests

Lawrence R. Dick and James E. Brownell are employees of Millennium Pharmaceuticals. Lynn Bedford, James Lowe and R. John Mayer declare no competing financial interests.

Glossary

Ubiquitin

A highly conserved 76 amino-acid protein that can be reversibly attached to other proteins. Key structural features of ubiquitin include its β-grasp fold (a characteristic of all ubiquitin-like proteins), its C-terminal tail and seven lysine residues through which polyubiquitin chains are linked.

Proteasome

The 26S proteasome is a protease complex that degrades polyubiquitylated proteins. It is composed of two subcomplexes: a barrel-shaped 20S core particle containing the protease active sites and two 19S regulatory particles that cap the barrel and control access of substrates to the core.

Nuclear factor-κB

(NF-κB). A transcription factor with a key role in regulating the immune response. NF-κB is involved in cellular responses to stimuli, including stress, cytokines, free radicals, ultraviolet irradiation and bacterial or viral antigens. Misregulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection and improper immune development.

HECT domain

A domain of 350 amino acids found at the C terminus of HECT E3s. The HECT domain contains a catalytic cysteine residue that accepts ubiquitin from an E2 to form a thioester intermediate before transferring ubiquitin to a substrate lysine.

U-box

A domain comprising 70 amino acids that possesses a tertiary structure resembling the RING finger domain. The major difference is that the Ubox lacks the characteristic zinc-chelating cysteine and histidine residues of the RING finger. Consequently, Ubox E3s use intramolecular interactions other than zinc chelation to maintain the RING finger motif.

RING finger

A domain present in most E3s that is defined by the consensus sequence C-X2-C-X[9-39]-C-X[1-3]-H-X[2-3]-C-X2-C-X[4-48]-C-X2-C (where X means any amino acid). The RING domain coordinates two zinc ions.

Cullin-RING ligases

(CRLs). CRLs are a large family of multi-component E3s consisting of a core cullin protein bound to a RING finger protein (Rbx1/2), and an interchangeable substrate-binding adaptor protein. There are seven cullins and 600 adaptors in the human genome. Modification of the cullin subunit by NEDD8 is required for activation of CRL E3 ligase activity.

SCF

SCF complexes are cullin RING ligases (CRLs) that catalyse the ubiquitylation of proteins targeted to the proteasome for degradation. SCF core subunits include the structural protein cullin 1, the RING-finger protein RBX1/2 and the adaptor protein Skp1. This core complex binds to one of the approximately 100 F-box proteins that are responsible for recruiting substrates. F-box proteins are named for the conserved 50 amino acid F-box domain that binds to SKP1. All CRLs, including SCFs, require NEDD8 modification of the cullin subunit for ligase activity.

Rapamycin

Rapamycin (sirolimus) is a macrocyclic antibiotic produced by a bacterium isolated from soil on Easter Island. Rapamycin binds the cytosolic protein FK-binding protein 12 (FKBP12). The rapamcyin–FKBP12 complex inhibits the mTOR (mammalian target of rapamycin) pathway by directly binding mTOR complex1 (mTORC1).

Cysteine proteases

This class of protease uses a cysteine thiol group in its catalytic mechanism. Deprotonation of the cysteine sulphydryl by an adjacent residue (usually histidine) is followed by nucleophilic attack on the peptide carbonyl carbon. A thioester linking the new C terminus to the cysteine thiol is an intermediate of the reaction.

Zinc metalloproteases

A class of protease for which the active sites include two histidine residues that coordinate a zinc ion. During catalysis, the Zn2+ promotes attack of the peptide carbonyl carbon by the oxygen atom of a water molecule at the active site. An active site base facilitates this reaction by extracting a proton from the attacking water molecule.

Autophagy

Literally means 'self-eating'; a highly regulated catabolic process in which cellular proteins and organelles are sequestered in a characteristic double-membrane vesicle called an autophagosome and are then degraded following vesicular fusion with a lysosome.

Endosome–lysosome pathway

Endosomes are membrane- bound vesicles that are involved in protein transport between the plasma membrane, Golgi and lysosomes. In the endocytic pathway, internalized molecules are delivered to early endosomes, where efficient sorting occurs. Some molecules, including recycling receptors, are shunted back to the plasma membrane to be reused. Others, including downregulated receptors, are transported to late endosomes and lysosomes for degradation.

Lewy bodies

Lewy bodies are abnormal protein aggregates that develop inside nerve cells in Parkinson's disease and Alzheimer's disease and some other disorders. They are identified when histology is performed on the brain and appear as spherical masses that displace other cell components.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedford, L., Lowe, J., Dick, L. et al. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nat Rev Drug Discov 10, 29–46 (2011). https://doi.org/10.1038/nrd3321

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd3321

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research