Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and approaches for the development of safer immunomodulatory biologics

Key Points

  • Immunomodulatory biologics are a class of biotechnology-derived therapeutic products that are designed to engage immune-relevant targets and are indicated in the treatment and management of a range of diseases, including immune-mediated inflammatory diseases and malignancies.

  • Despite their high specificity and therapeutic advantages, immmunomodulatory biologics have been associated with adverse reactions such as serious infections, malignancies and cytokine release syndrome, which arise owing to the on-target or exaggerated pharmacological effects of these drugs. Immunogenicity resulting in the generation of antidrug antibodies is another unwanted effect that leads to loss of efficacy and — rarely — hypersensitivity reactions.

  • For some adverse reactions, mitigating and preventive strategies are in place, such as stratifying patients on the basis of responsiveness to therapy and the risk of developing adverse reactions. These strategies depend on the availability of robust biomarkers for therapeutic efficacy and the risk of adverse reactions: for example, seropositivity for John Cunningham virus is a risk factor for progressive multifocal leukoencephalopathy. The development of effective biomarkers will greatly aid these strategies.

  • The development and design of safer immunomodulatory biologics is reliant on a detailed understanding of the nature of the disease, target biology, the interaction of the target with the immunomodulatory biologic and the inherent properties of the biologic that elicit unwanted effects.

  • The availability of in vitro and in vivo models that can be used to predict adverse reactions associated with immunomodulatory biologics is central to the development of safer immunomodulatory biologics. Some progress has been made in developing in vitro and in silico tests for predicting cytokine release syndrome and immunogenicity, but there is still a lack of models for effectively predicting infections and malignancies.

  • Two pathways can be followed in designing and developing safer immunomodulatory biologics. The first pathway involves generating a biologic that engages an alternative target or mechanism to produce the desired pharmacodynamic effect without the associated adverse reaction, and is followed when the adverse reaction cannot be dissociated from the target biology. The second pathway involves redesigning the biologic to 'engineer out' components within the biologic structure that trigger adverse effects or to alter the nature of the target–biologic interactions.

Abstract

Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions — including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity — pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex interactions among the disease, the immune system and immunomodulatory biologics that influence safety and efficacy.
Figure 2: Pathways for the development of safer immunomodulatory biologics.

Similar content being viewed by others

References

  1. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  2. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nature Rev. Drug Discov. 7, 21–39 (2008).

    Article  CAS  Google Scholar 

  3. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. The safety and side effects of monoclonal antibodies. Nature Rev. Drug Discov. 9, 325–338 (2010). This is a comprehensive discussion of adverse reactions associated with mAbs, including immunomodulatory mAbs.

    Article  CAS  Google Scholar 

  4. Sorensen, P. S. et al. Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab. Mult. Scler. 18, 143–152 (2012). This article reviews the risk factors for PML in patients receiving natalizumab therapy and discusses the importance of patient stratification based on risk.

    Article  PubMed  CAS  Google Scholar 

  5. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366, 1870–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Bongartz, T. et al. Etanercept therapy in rheumatoid arthritis and the risk of malignancies: a systematic review and individual patient data meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 68, 1177–1183 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. US Food and Drug Administration. Tumor necrosis factor (TNF) blockers, azathioprine and/or mercaptopurine: update on reports of hepatosplenic T-cell lymphoma in adolescents and young adults. FDA website [online], (2011).

  9. Dommasch, E. D. et al. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J. Am. Acad. Dermatol. 64, 1035–1050 (2011). References 8 and 9 are systematic reviews that enumerate the incidences of adverse reactions, particularly infections and malignancies, associated with immunomodulatory biologics used in the treatment of rheumatoid arthritis and psoriatic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beukelman, T. et al. Rates of malignancy associated with juvenile idiopathic arthritis and its treatment. Arthritis Rheum. 64, 1263–1271 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Le Blay, P., Mouterde, G., Barnetche, T., Morel, J. & Combe, B. Short-term risk of total malignancy and nonmelanoma skin cancers with certolizumab and golimumab in patients with rheumatoid arthritis: metaanalysis of randomized controlled trials. J. Rheumatol. 39, 712–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dias, C. & Isenberg, D. A. Susceptibility of patients with rheumatic diseases to B-cell non-Hodgkin lymphoma. Nature Rev. Rheumatol. 7, 360–368 (2011).

    Article  CAS  Google Scholar 

  14. Grinyo, J. et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation 90, 1521–1527 (2010).

    Article  PubMed  Google Scholar 

  15. Arora, S., Tangirala, B., Osadchuk, L. & Sureshkumar, K. K. Belatacept: a new biological agent for maintenance immunosuppression in kidney transplantation. Expert Opin. Biol. Ther. 12, 965–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Walker, M. R., Makropoulos, D. A., Achuthanandam, R., Van Arsdell, S. & Bugelski, P. J. Development of a human whole blood assay for prediction of cytokine release similar to anti-CD28 superagonists using multiplex cytokine and hierarchical cluster analysis. Int. Immunopharmacol. 11, 1697–1705 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Ponce, R. Adverse consequences of immunostimulation. J. Immunotoxicol. 5, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006). This paper describes the CRS triggered by the immunomodulatory biologic TGN1412.

    Article  CAS  PubMed  Google Scholar 

  19. Abramowicz, D., Crusiaux, A. & Goldman, M. Anaphylactic shock after retreatment with OKT3 monoclonal antibody. N. Engl. J. Med. 327, 736 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Baudouin, V. et al. Anaphylactic shock caused by immunoglobulin E sensitization after retreatment with the chimeric anti-interleukin-2 receptor monoclonal antibody basiliximab. Transplantation 76, 459–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Chirmule, N., Jawa, V. & Meibohm, B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 14, 296–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ponce, R. et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul. Toxicol. Pharmacol. 54, 164–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Bendtzen, K. et al. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor α inhibitor infliximab. Arthritis Rheum. 54, 3782–3789 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Bartelds, G. M. et al. Surprising negative association between IgG1 allotype disparity and anti-adalimumab formation: a cohort study. Arthritis Res. Ther. 12, R221 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bartelds, G. M. et al. Anti-adalimumab antibodies in rheumatoid arthritis patients are associated with interleukin-10 gene polymorphisms. Arthritis Rheum. 60, 2541–2542 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. European Medicines Agency. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins. EMA website [online], (2008).

  27. US Food and Drug Administration. Guidance for industry: assay development for immunogenicity testing of therapeutic proteins. FDA website [online], (2009).

  28. Dall'Acqua, W. F., Kiener, P. A. & Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Oganesyan, V., Gao, C., Shirinian, L., Wu, H. & Dall'Acqua, W. F. Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr. D Biol. Crystallogr. 64, 700–704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mossner, E. et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115, 4393–4402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salles, G. et al. Phase 1 study results of the type II glycoengineered humanized anti-CD20 monoclonal antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood 119, 5126–5132 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Davies, J. et al. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FCγRIII. Biotechnol. Bioeng. 74, 288–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nature Rev. Drug Discov. 8, 226–234 (2009).

    Article  CAS  Google Scholar 

  34. Boyd, P. N., Lines, A. C. & Patel, A. K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Slavin, R. G. et al. Asthma symptom re-emergence after omalizumab withdrawal correlates well with increasing IgE and decreasing pharmacokinetic concentrations. J. Allergy Clin. Immunol. 123, 107–113.e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Sethu, S. et al. Immunogenicity to biologics: mechanisms, prediction and reduction. Arch. Immunol. Ther. Exp. 60, 331–344 (2012).

    Article  CAS  Google Scholar 

  38. Tabrizi, M. A. et al. Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov. Today 14, 298–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chapman, K. et al. Preclinical development of monoclonal antibodies: considerations for the use of non-human primates. MAbs 1, 505–516 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haley, P. et al. STP position paper: best practice guideline for the routine pathology evaluation of the immune system. Toxicol. Pathol. 33, 404–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kuper, C. F., Harleman, J. H., Richter-Reichelm, H. B. & Vos, J. G. Histopathologic approaches to detect changes indicative of immunotoxicity. Toxicol. Pathol. 28, 454–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Brennan, F. R. et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2, 233–255 (2010). This is a comprehensive description and analysis of the various strategies adopted for the preclinical safety assessment of immunomodulatory mAbs.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Plitnick, L. M. & Herzyk, D. J. The T-dependent antibody response to keyhole limpet hemocyanin in rodents. Methods Mol. Biol. 598, 159–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hutto, D. L. Opportunistic infections in non-human primates exposed to immunomodulatory biotherapeutics: considerations and case examples. J. Immunotoxicol. 7, 120–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Burleson, F. G. & Burleson, G. R. Host resistance assays including bacterial challenge models. Methods Mol. Biol. 598, 97–108 (2010). This paper describes several host resistance models available that could be adopted for the preclinical assessment of infection or the risk of malignancy associated with immunomodulatory biologics.

    Article  CAS  PubMed  Google Scholar 

  46. Wagar, E. J. et al. Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice. J. Immunol. 165, 518–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kawabata, T. et al. Summary of roundtable discussion meeting: non-human primates to assess risk for EBV-related lymphomas in humans. J. Immunotoxicol. 9, 121–127 (2012).

    Article  PubMed  Google Scholar 

  48. Kirton, C. M., Gliddon, D. R., Bannish, G., Bembridge, G. P. & Coney, L. A. In vitro cytokine release assays: reducing the risk of adverse events in man. Bioanalysis 3, 2657–2663 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. The Health and Environmental Sciences Institute (HESI). HESI Technical Committee. Immunotoxicology: 2011–2012 Activities and Accomplishments. HESI Global [online], (2012).

  50. Dhir, V. et al. A predictive biomimetic model of cytokine release induced by TGN1412 and other therapeutic monoclonal antibodies. J. Immunotoxicol. 9, 34–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Vidal, J. M. et al. In vitro cytokine release assays for predicting cytokine release syndrome: the current state-of-the-science. Report of a European Medicines Agency Workshop. Cytokine 51, 213–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Muller, P. Y., Milton, M., Lloyd, P., Sims, J. & Brennan, F. R. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr. Opin. Biotechnol. 20, 722–729 (2009). This is a detailed discussion on how to utilize preclinical data on mAbs in the selection of FIH doses for clinical trials.

    Article  CAS  PubMed  Google Scholar 

  53. Muller, P. Y. & Brennan, F. R. Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clin. Pharmacol. Ther. 85, 247–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Milton, M. N. & Horvath, C. J. The EMEA guideline on first-in-human clinical trials and its impact on pharmaceutical development. Toxicol. Pathol. 37, 363–371 (2009).

    Article  PubMed  Google Scholar 

  55. Inaba, H., Martin, W., De Groot, A. S., Qin, S. & De Groot, L. J. Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves' disease. J. Clin. Endocrinol. Metab. 91, 2286–2294 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Khan, A. M. et al. A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell. Immunol. 244, 141–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. De Groot, A. S. & Berzofsky, J. A. From genome to vaccine — new immunoinformatics tools for vaccine design. Methods 34, 425–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. De Groot, A. S. & Moise, L. Prediction of immunogenicity for therapeutic proteins: state of the art. Curr. Opin. Drug Discov. Devel. 10, 332–340 (2007).

    CAS  PubMed  Google Scholar 

  59. Koren, E. et al. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin. Immunol. 124, 26–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. De Groot, A. S. & Martin, W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin. Immunol. 131, 189–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. El-Manzalawy, Y., Dobbs, D. & Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 21, 243–255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Larsen, J. E., Lund, O. & Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2, 2 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sollner, J. et al. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res. 4, 1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kumar, S., Mitchell, M. A., Rup, B. & Singh, S. K. Relationship between potential aggregation-prone regions and HLA-DR-binding T-cell immune epitopes: implications for rational design of novel and follow-on therapeutic antibodies. J. Pharm. Sci. 101, 2686–2701 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Agrawal, N. J. et al. Aggregation in protein-based biotherapeutics: computational studies and tools to identify aggregation-prone regions. J. Pharm. Sci. 100, 5081–5095 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Barbosa, M. D., Vielmetter, J., Chu, S., Smith, D. D. & Jacinto, J. Clinical link between MHC class II haplotype and interferon-β (IFN-β) immunogenicity. Clin. Immunol. 118, 42–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Kropshofer, H. & Singer, T. Overview of cell-based tools for pre-clinical assessment of immunogenicity of biotherapeutics. J. Immunotoxicol. 3, 131–136 (2006).

    Article  PubMed  Google Scholar 

  68. Jaber, A. & Baker, M. Assessment of the immunogenicity of different interferon β-1a formulations using ex vivo T-cell assays. J. Pharm. Biomed. Anal. 43, 1256–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Baker, M. P. & Jones, T. D. Identification and removal of immunogenicity in therapeutic proteins. Curr. Opin. Drug Discov. Devel. 10, 219–227 (2007).

    CAS  PubMed  Google Scholar 

  70. Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010). This paper provides detailed analyses of the rates, causes and potential mechanisms of the immunogenicity induced by biologics (including immunomodulatory biologics) as well as tools for predicting this immunogenicity.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Depil, S. et al. Peptide-binding assays and HLA II transgenic Aβ degrees mice are consistent and complementary tools for identifying HLA II-restricted peptides. Vaccine 24, 2225–2229 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Pan, S., Trejo, T., Hansen, J., Smart, M. & David, C. S. HLA-DR4 (DRB1*0401) transgenic mice expressing an altered CD4-binding site: specificity and magnitude of DR4-restricted T cell response. J. Immunol. 161, 2925–2929 (1998).

    CAS  PubMed  Google Scholar 

  73. Palleroni, A. V. et al. Interferon immunogenicity: preclinical evaluation of interferon-α 2a. J. Interferon Cytokine Res. 17 (Suppl. 1), 23–27 (1997).

    Google Scholar 

  74. Hermeling, S. et al. Antibody response to aggregated human interferon α2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J. Pharm. Sci. 95, 1084–1096 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain(null) mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pearson, T., Greiner, D. L. & Shultz, L. D. Creation of “humanized” mice to study human immunity. Curr. Protoc. Immunol. 1 May 2008 (doi:10.1002/0471142735.im1521s81).

  77. King, M. et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor γ chain gene. Clin. Immunol. 126, 303–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Brinks, V., Jiskoot, W. & Schellekens, H. Immunogenicity of therapeutic proteins: the use of animal models. Pharm. Res. 28, 2379–2385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kircik, L. H. & Del Rosso, J. Q. Anti-TNF agents for the treatment of psoriasis. J. Drugs Dermatol. 8, 546–559 (2009).

    PubMed  Google Scholar 

  80. El Mourabet, M., El-Hachem, S., Harrison, J. R. & Binion, D. G. Anti-TNF antibody therapy for inflammatory bowel disease during pregnancy: a clinical review. Curr. Drug Targets 11, 234–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Papp, K. A. et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from five years of follow-up. Br. J. Dermatol. 10 Jan 2013 (doi:10.1111/bjd.12214).

    Article  CAS  Google Scholar 

  82. Ray, K. IBD: ustekinumab shows promise in the treatment of refractory Crohn's disease. Nature Rev. Gastroenterol. Hepatol. 9, 690 (2012).

    Article  Google Scholar 

  83. Parikh, A. et al. Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study. Inflamm. Bowel Dis. 18, 1470–1479 (2012).

    Article  PubMed  Google Scholar 

  84. Haanstra, K. G. et al. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. J. Immunol. 190, 1961–1973 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Li, S. et al. Pharmacokinetics and tolerability of human mouse chimeric anti-CD22 monoclonal antibody in Chinese patients with CD22-positive non-Hodgkin lymphoma. MAbs 4, 256–266 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang, X. & Markovic-Plese, S. Interferon β inhibits the Th17 cell-mediated autoimmune response in patients with relapsing-remitting multiple sclerosis. Clin. Neurol. Neurosurg. 112, 641–645 (2010).

    Article  PubMed  Google Scholar 

  87. Wang, C. et al. Small Modular ImmunoPharmaceutical (SMIPTM) molecules directed at the TCR complex (CD3) block T cell activation and cause minimal cytokine release in vitro. J. Immunol. 184, Abstract 96.25 (2010).

    Google Scholar 

  88. Beckett, T. et al. Small Modular ImmunoPharmaceutical (SMIPTM) molecules directed at the TCR complex block acute graft versus host disease and cause minimal cytokine release in vivo. J. Immunol. 184, Abstract 145.30 (2010).

    Google Scholar 

  89. Burge, D. J. et al. Pharmacokinetic and pharmacodynamic properties of TRU-015, a CD20-directed small modular immunopharmaceutical protein therapeutic, in patients with rheumatoid arthritis: a Phase I, open-label, dose-escalation clinical study. Clin. Ther. 30, 1806–1816 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, S. & Ballow, M. Monoclonal antibodies and fusion proteins and their complications: targeting B cells in autoimmune diseases. J. Allergy Clin. Immunol. 125, 814–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Tawara, T. et al. Complement activation plays a key role in antibody-induced infusion toxicity in monkeys and rats. J. Immunol. 180, 2294–2298 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Nagorsen, D., Kufer, P., Baeuerle, P. A. & Bargou, R. Blinatumomab: a historical perspective. Pharmacol. Ther. 136, 334–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Gupta, P., Goldenberg, D. M., Rossi, E. A. & Chang, C. H. Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood 116, 3258–3267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qu, Z. et al. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 111, 2211–2219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Furst, D. E. Development of TNF inhibitor therapies for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol. 28, S5–S12 (2010).

    PubMed  Google Scholar 

  96. Greenberg, J. D. et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann. Rheum. Dis. 69, 380–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Colombel, J. F. et al. The safety profile of infliximab in patients with Crohn's disease: the Mayo clinic experience in 500 patients. Gastroenterology 126, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Zabana, Y. et al. Infliximab safety profile and long-term applicability in inflammatory bowel disease: 9-year experience in clinical practice. Aliment. Pharmacol. Ther. 31, 553–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Lane, M. A. et al. TNF-α antagonist use and risk of hospitalization for infection in a national cohort of veterans with rheumatoid arthritis. Medicine (Baltimore) 90, 139–145 (2011).

    Article  CAS  Google Scholar 

  100. Favalli, E. G. et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun. Rev. 8, 266–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Singh, J. A. et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev 16 Feb 2011 (doi:10.1002/14651858.CD008794.pub2). This is a systematic review that enumerates the incidences of adverse reactions, particularly infections and malignancies, associated with immunomodulatory biologics.

  102. Schoels, M., Aletaha, D., Smolen, J. S. & Wong, J. B. Comparative effectiveness and safety of biological treatment options after tumour necrosis factor α inhibitor failure in rheumatoid arthritis: systematic review and indirect pairwise meta-analysis. Ann. Rheum. Dis. 30 Jan 2012 (doi:10.1136/annrheumdis-2011-200490).

    Article  CAS  PubMed  Google Scholar 

  103. Curtis, J. R. & Singh, J. A. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin. Ther. 33, 679–707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grasland, A., Sterpu, R., Boussoukaya, S. & Mahe, I. Autoimmune hepatitis induced by adalimumab with successful switch to abatacept. Eur. J. Clin. Pharmacol. 68, 895–898 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Germanidis, G., Hytiroglou, P., Zakalka, M. & Settas, L. Reactivation of occult hepatitis B virus infection, following treatment of refractory rheumatoid arthritis with abatacept. J. Hepatol. 56, 1420–1421 (2012).

    Article  PubMed  Google Scholar 

  106. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Epping, G., van der Valk, P. D. & Hendrix, R. Legionella pneumophila pneumonia in a pregnant woman treated with anti-TNF-α antibodies for Crohn's disease: a case report. J. Crohns Colitis 4, 687–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. US Food and Drug Administration. FDA drug safety communication: Drug labels for the tumor necrosis factor-α (TNFα) blockers now include warnings about infection with Legionella and Listeria bacteria. FDA website [online], (2011).

  109. Kendler, D. L. et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J. Bone Miner. Res. 25, 72–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Askling, J. et al. Time-dependent increase in risk of hospitalisation with infection among Swedish RA patients treated with TNF antagonists. Ann. Rheum. Dis. 66, 1339–1344 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Watts, N. B. et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos. Int. 23, 327–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Isvy, A. et al. Safety of rituximab in rheumatoid arthritis: a long-term prospective single-center study of gammaglobulin concentrations and infections. Joint Bone Spine 79, 365–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Popa, C., Leandro, M. J., Cambridge, G. & Edwards, J. C. Repeated B lymphocyte depletion with rituximab in rheumatoid arthritis over 7 yrs. Rheumatology 46, 626–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Emery, P. et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54, 1390–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 48, 927–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Fleischmann, R. M. et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1006–1012 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Danilenko, D. M. & Wang, H. The yin and yang of immunomodulatory biologics: assessing the delicate balance between benefit and risk. Toxicol. Pathol. 40, 272–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Boren, E. J., Cheema, G. S., Naguwa, S. M., Ansari, A. A. & Gershwin, M. E. The emergence of progressive multifocal leukoencephalopathy (PML) in rheumatic diseases. J. Autoimmun. 30, 90–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Carson, K. R. et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 10, 816–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Barkholt, L., Linde, A. & Falk, K. I. OKT3 and ganciclovir treatments are possibly related to the presence of Epstein-Barr virus in serum after liver transplantation. Transpl. Int. 18, 835–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Keay, S. et al. Posttransplantation lymphoproliferative disorder associated with OKT3 and decreased antiviral prophylaxis in pancreas transplant recipients. Clin. Infect. Dis. 26, 596–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Krueger, G. G., Gottlieb, A. B., Sterry, W., Korman, N. & Van De Kerkhof, P. A multicenter, open-label study of repeat courses of intramuscular alefacept in combination with other psoriasis therapies in patients with chronic plaque psoriasis. J. Dermatolog. Treat. 19, 146–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Nguyen, D. H., Hurtado-Ziola, N., Gagneux, P. & Varki, A. Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl Acad. Sci. USA 103, 7765–7770 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bugelski, P. J. & Martin, P. L. Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br. J. Pharmacol. 166, 823–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martin, P. L. & Bugelski, P. J. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets. Br. J. Pharmacol. 166, 806–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eastwood, D. et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br. J. Pharmacol. 161, 512–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Legrand, N. et al. Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in “human immune system” Rag2−/−γc−/− mice. Blood 108, 238–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Luhder, F. et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J. Exp. Med. 197, 955–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tacke, M., Hanke, G., Hanke, T. & Hunig, T. CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur. J. Immunol. 27, 239–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Lin, C. H. & Hunig, T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur. J. Immunol. 33, 626–638 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Stebbings, R. et al. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J. Immunol. 179, 3325–3331 (2007). References 132 and 133 provide insights into the failure of preclinical models to predict the CRS caused by TGN1412.

    Article  CAS  PubMed  Google Scholar 

  134. Birmingham, D. J. & Hebert, L. A. CR1 and CR1-like: the primate immune adherence receptors. Immunol. Rev. 180, 100–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Katschke, K. J. Jr et al. Structural and functional analysis of a C3b-specific antibody that selectively inhibits the alternative pathway of complement. J. Biol. Chem. 284, 10473–10479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Warncke, M. et al. Different adaptations of IgG effector function in human and nonhuman primates and implications for therapeutic antibody treatment. J. Immunol. 188, 4405–4411 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. O'Day, S. J. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21, 1712–1717 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Kumar, S., Singh, S. K., Wang, X., Rup, B. & Gill, D. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm. Res. 28, 949–961 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. van Beers, M. M., Jiskoot, W. & Schellekens, H. On the role of aggregates in the immunogenicity of recombinant human interferon β in patients with multiple sclerosis. J. Interferon Cytokine Res. 30, 767–775 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. van Beers, M. M. et al. Hybrid transgenic immune tolerant mouse model for assessing the breaking of B cell tolerance by human interferon β. J. Immunol. Methods 352, 32–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Braun, A., Kwee, L., Labow, M. A. & Alsenz, J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon α (IFN-α) in normal and transgenic mice. Pharm. Res. 14, 1472–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Joubert, M. K. et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J. Biol. Chem. 287, 25266–25279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. De Groot, A. S., Knopp, P. M. & Martin, W. De-immunization of therapeutic proteins by T-cell epitope modification. Dev. Biol. 122, 171–194 (2005).

    CAS  Google Scholar 

  144. Tangri, S. et al. Rationally engineered therapeutic proteins with reduced immunogenicity. J. Immunol. 174, 3187–3196 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. De Groot, A. S. et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood 112, 3303–3311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Basu, A. et al. Structure–function engineering of interferon-β-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem. 17, 618–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Jevsevar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Armstrong, J. K. et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110, 103–111 (2007).

    Article  PubMed  Google Scholar 

  149. Ganson, N. J., Kelly, S. J., Scarlett, E., Sundy, J. S. & Hershfield, M. S. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res. Ther. 8, R12 (2006).

    Article  PubMed  CAS  Google Scholar 

  150. Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S. & Varki, A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature Biotech. 28, 863–867 (2010). This paper describes the first identification, in humans, of pre-existing antibodies to N -glycolylneuraminic acid-modified therapeutic biologics.

    Article  CAS  Google Scholar 

  151. von Delwig, A. et al. The impact of glycosylation on HLA-DR1-restricted T cell recognition of type II collagen in a mouse model. Arthritis Rheum. 54, 482–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Singh, S. K. Impact of product-related factors on immunogenicity of biotherapeutics. J. Pharm. Sci. 100, 354–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Meritet, J. F., Maury, C. & Tovey, M. G. Induction of tolerance to recombinant therapeutic proteins. J. Interferon Cytokine Res. 21, 1031–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Meritet, J. F., Maury, C. & Tovey, M. G. Effect of oromucosal administration of IFN-α on allergic sensitization and the hypersensitive inflammatory response in animals sensitized to ragweed pollen. J. Interferon Cytokine Res. 21, 583–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Nagler-Anderson, C., Terhoust, C., Bhan, A. K. & Podolsky, D. K. Mucosal antigen presentation and the control of tolerance and immunity. Trends Immunol. 22, 120–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Somerfield, J. et al. A novel strategy to reduce the immunogenicity of biological therapies. J. Immunol. 185, 763–768 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. [No authors listed.] Deal watch: Boosting TRegs to target autoimmune disease. Nature Rev. Drug Discov. 10, 566 (2011).

  159. Maldonado, R. A. & von Andrian, U. H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol. 108, 111–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bluestone, J. A., Thomson, A. W., Shevach, E. M. & Weiner, H. L. What does the future hold for cell-based tolerogenic therapy? Nature Rev. Immunol. 7, 650–654 (2007).

    Article  CAS  Google Scholar 

  161. Yan, G. et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nature Biotech. 29, 1019–1023 (2011).

    Article  CAS  Google Scholar 

  162. Stevison, L. S. & Kohn, M. H. Determining genetic background in captive stocks of cynomolgus macaques (Macaca fascicularis). J. Med. Primatol. 37, 311–317 (2008).

    CAS  PubMed  Google Scholar 

  163. Saito, Y., Naruse, T. K., Akari, H., Matano, T. & Kimura, A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 64, 131–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Chamanza, R., Marxfeld, H. A., Blanco, A. I., Naylor, S. W. & Bradley, A. E. Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol. Pathol. 38, 642–657 (2010).

    Article  PubMed  Google Scholar 

  165. Bussiere, J. L. et al. Alternative strategies for toxicity testing of species-specific biopharmaceuticals. Int. J. Toxicol. 28, 230–253 (2009). This is a critical analysis of the utility of disease models, transgenic models and surrogate molecules for testing the preclinical safety of biologics.

    Article  CAS  PubMed  Google Scholar 

  166. Clarke, J. et al. Evaluation of a surrogate antibody for preclinical safety testing of an anti-CD11a monoclonal antibody. Regul. Toxicol. Pharmacol. 40, 219–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Hu, C. Y. et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest. 117, 3857–3867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, H., Benoist, C. & Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl Acad. Sci. USA 107, 4658–4663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Abraham, D. & McGrath, K. G. Hypersensitivity to aldesleukin (interleukin-2 and proleukin) presenting as facial angioedema and erythema. Allergy Asthma Proc. 24, 291–294 (2003).

    PubMed  Google Scholar 

  170. Strayer, D. R. & Carter, W. A. Recombinant and natural human interferons: analysis of the incidence and clinical impact of neutralizing antibodies. J. Interferon Cytokine Res. 32, 95–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Investigators, C. T. et al. Alemtuzumab versus interferon β-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  Google Scholar 

  172. Gopal, A. K. et al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplant. Blood 120, 560–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruf, P. et al. Pharmacokinetics, immunogenicity and bioactivity of the therapeutic antibody catumaxomab intraperitoneally administered to cancer patients. Br. J. Clin. Pharmacol. 69, 617–625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jankowitz, R., Joyce, J. & Jacobs, S. A. Anaphylaxis after administration of ibritumomab tiuxetan for follicular non-hodgkin lymphoma. Clin. Nucl. Med. 33, 94–96 (2008).

    Article  PubMed  Google Scholar 

  175. Jaffers, G. J. et al. Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41, 572–578 (1986).

    Article  CAS  PubMed  Google Scholar 

  176. Coiffier, B. et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood 111, 1094–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Buchegger, F. et al. Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin's lymphoma. Br. J. Cancer 94, 1770–1776 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bartelds, G. M. et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305, 1460–1468 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Kumar, D., Bouldin, T. W. & Berger, R. G. A case of progressive multifocal leukoencephalopathy in a patient treated with infliximab. Arthritis Rheum. 62, 3191–3195 (2010).

    Article  PubMed  Google Scholar 

  180. Sorensen, P. S. et al. Occurrence of antibodies against natalizumab in relapsing multiple sclerosis patients treated with natalizumab. Mult. Scler. 17, 1074–1078 (2011).

    Article  PubMed  CAS  Google Scholar 

  181. Cruz, A. A. et al. Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection. Clin. Exp. Allergy 37, 197–207 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Stubenrauch, K. et al. Subset analysis of patients experiencing clinical events of a potentially immunogenic nature in the pivotal clinical trials of tocilizumab for rheumatoid arthritis: evaluation of an antidrug antibody ELISA using clinical adverse event-driven immunogenicity testing. Clin. Ther. 32, 1597–1609 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F. Brennan for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kevin Park.

Ethics declarations

Competing interests

Lolke de Haan is an employee of Medimmune, Cambridge, UK.

James Green is an employee of Boehringer-Ingelheim, Sudbury, USA.

Jonathan Moggs is an employee of Novartis, Basel, Switzerland.

Jennifer Sims is an employee of Integrated Biologix, Basel, Switzerland.

Meena Subramanyam is an employee of Biogen Idec, Cambridge, Massachusetts, USA.

Marque Todd is an employee of Pfizer, California, USA.

Richard Weaver is an employee of Biologie Servier, Gidy, France.

All other authors declare no competing financial interests.

Supplementary information

Supplementary information Box S1

Pharmacovigilance and the role of regulators (PDF 241 kb)

Related links

Related links

FURTHER INFORMATION

Citizens For Responsible Care and Research (CIRCARE) — Tegenero AG TGN1412 clinical trial

CRACK IT 2011 challenge 4 (“Improving the predictive capacity of in vitro cytokine release”)

Drugs@FDA — FDA-approved drug products

European public assessment reports

University of Liverpool — Centre for Drug Safety Science

Glossary

Immunomodulatory biologics

Biotechnology-derived pharmaceutical agents (recombinant proteins and therapeutic monoclonal antibodies) that render their therapeutic effect primarily through modulating (augmenting or reducing) immune responses by targeting immune-relevant molecules.

Adverse reactions

Any adverse events occurring in temporal association with a therapeutic for which causality (possible, probable or definite) has been determined.

Boxed warnings

Warnings on a pharmaceutical product label indicating the risk of a serious or life-threatening adverse reaction (or reactions) associated with the use of the therapeutic agent.

Post-transplant lymphoproliferative disease

A disorder characterized by the neoplastic proliferation of lymphocytes that usually occurs as a result of therapeutic immunosuppression induced to prevent transplant rejection.

Fc region

A non-antigen-binding region of an antibody molecule that is involved in the binding of the antibody to Fc receptors and to the complement component C1q, which can lead to antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity.

Antibody-dependent cellular cytotoxicity

(ADCC). An effector function mediated by the Fc region of an antibody that involves the death of a target cell owing to the interaction of the Fc region of the therapeutic antibody with activatory Fcγ receptors on phagocytic cells (such as neutrophils and macrophages) and natural killer cells. Target cell death is induced through either ingestion by phagocytic cells or via the secretion of cytotoxic molecules by natural killer cells.

Complement-dependent cytotoxicity

(CDC). An effector function mediated by the Fc region of an antibody that involves complement activation induced by the engagement of C1q (a complement component) with the Fc region of the therapeutic antibody (which is bound to the target cell). This leads to the formation of a membrane attack complex, resulting in the destruction of the target cell membrane and cell death.

Fc-mediated effector functions

A collective term referring to antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity; these processes result in target cell destruction but they may also result in adverse reactions such as cytokine release syndrome and tumour lysis syndrome.

Neonatal Fc receptor

(FcRn). A type of Fc receptor that is structurally related to major histocompatibility complex (MHC) class 1 molecules and is involved in binding to and recycling circulating immunoglobulin G, thereby increasing the serum half-life of these immunoglobulins.

Biomarkers

Readouts (usually biochemical in nature) obtained through measurements performed on humans or preclinical models that can report on and allow quantitative assessments to be made on one or a combination of the following: the disease state, immune status, pharmacological efficacy, pharmacological safety and the onset of adverse reactions.

Human leukocyte antigen

(HLA). The human major histocompatibility complex (MHC) molecule involved in the presentation of antigenic peptides derived from intracellular (in the case of HLA class I) or extracellular (in the case of HLA class II) sources. The recognition of specific HLA–peptide complexes by antigen-specific T lymphocytes initiates the immune response.

Humanized monoclonal antibody

An antibody that contains only the antigen-binding region derived from a non-human species (such as mice); the remaining regions of the antibody are of human origin.

Primary immunological responses

The initial humoral immune responses that are generated following the exposure of naive B lymphocytes to antigens for the first time. This is a relatively weak response and it is predominantly associated with the production of the immunoglobulin M class of antibodies against the antigen.

Secondary immunological responses

Rapid humoral immune responses that are triggered following the secondary or repeated exposure of antigen-experienced B lymphocytes to antigens. These responses are predominantly associated with the production of the immunoglobulin G class of antibodies with improved specificity and affinity for the antigens.

Syngeneic

A term referring to animal models being genetically identical to the tumours or cells that they are to be transplanted with. This ensures that the immune system of the host animal does not react towards the transplanted cells.

Minimal anticipated biological effect level

(MABEL). The anticipated dose level leading to a minimum biological effect level that can be ascribed to the pharmacological action of the immunomodulatory biologic. It is calculated using information obtained from all in vitro (using target cells from humans and relevant animal species) and in vivo (from relevant animal species) pharmacokinetic/pharmacodynamic (PK/PD) studies.

B cell tolerance

Immunological processes (such as clonal deletion and anergy induction) that operate to prevent B cells from responding to self antigens.

NOD-SCID-Il2rg-null mice

Non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice lacking the gene encoding the γ-chain of the interleukin-2 receptor (Il2rg).

Chimeric mAb

An antibody that contains regions derived from different species. For example, an antibody composed of an antigen-binding region of mouse origin and a constant region (Fc) of human origin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathish, J., Sethu, S., Bielsky, MC. et al. Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Discov 12, 306–324 (2013). https://doi.org/10.1038/nrd3974

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd3974

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research