Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malaria medicines: a glass half full?

Key Points

  • Antimalarial drug discovery has substantially contributed to the gains achieved against malaria over the past two decades. However, this progress and achieving the United Nations' Millennium Goals as they relate to malaria are both being threatened by emerging drug resistance, and major gaps persist for most target compound profiles.

  • Over the past decade, new, less costly and more sophisticated phenotypic screens have been developed, resulting in new drug candidates and antimalarial targets. Many of these molecules are now entering clinical development.

  • Four new molecules with unprecedented modes of action are currently in Phase II trials for blood-stage treatments: KAE609 (also known as cipargamin), OZ439 (also known as artefenomel), KAF156 (also known as GNF156) and DSM265. Each of these has the potential to shorten the current 3-day regimen of artemisinin combination therapies.

  • Significant contributions to the antimalarial drug discovery pipeline are being made by companies, academic institutions and non-profit organizations located in malaria-endemic countries. Moreover, Phase I studies are now being performed in populations that most need these antimalarials.

  • A new translational tool has been developed whereby antimalarial pharmacodynamics is studied in subclinically infected volunteers. The model is now routinely used for evaluating new drug candidates, resulting in significant time and cost savings for development.

  • Clinical efforts are needed to develop treatments for vulnerable populations such as young children and expectant mothers, and for chemoprotection. Efforts are also needed for drugs that target the liver schizont stage of malaria parasites and for preventing transmission.

  • Progress has been made in early open-access drug discovery, with increased availability of proprietary compounds for screening assays.

Abstract

Despite substantial scientific progress over the past two decades, malaria remains a worldwide burden that causes hundreds of thousands of deaths every year. New, affordable and safe drugs are required to overcome increasing resistance against artemisinin-based treatments, treat vulnerable populations, interrupt the parasite life cycle by blocking transmission to the vectors, prevent infection and target malaria species that transiently remain dormant in the liver. In this Review, we discuss how the antimalarial drug discovery pipeline has changed over the past 10 years, grouped by the various target compound or product profiles, to assess progress and gaps, and to recommend priorities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key events in the historical timeline of the discovery of antimalarial therapeutics.
Figure 2: Progression of the clinical development of new antimalarial candidates over the past 5 years.
Figure 3: Structures of some new experimental antimalarial molecules in clinical trials.
Figure 4: Key steps in the design of selected antimalarial compounds.
Figure 5: Geographical location of clinical Phase II–IV malaria studies from 2010 onwards.

Similar content being viewed by others

References

  1. Whitfield, J. Portrait of a serial killer: a roundup of the history and biology of the malaria parasite. Nature http://dx.doi.org/10.1038/news021001-6 (2002).

  2. World Health Organization. World Malaria Report (WHO, 2014). A country-by-country overview of issues and gains made against malaria.

  3. Sachs, J. & Malaney, P. The economic and social burden of malaria. Nature 415, 680–685 (2002).

    CAS  PubMed  Google Scholar 

  4. Sicuri, E., Vieta, A., Lindner, L., Constenla, D. & Sauboin, C. The economic costs of malaria in children in three sub-Saharan countries: Ghana, Tanzania and Kenya. Malar. J. 12, 307 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Wells, T. N., Alonso, P. L. & Gutteridge, W. E. New medicines to improve control and contribute to the eradication of malaria. Nature Rev. Drug Discov. 8, 879–891 (2009).

    CAS  Google Scholar 

  6. Anthony, M. P., Burrows, J. N., Duparc, S., Moehrle, J. & Wells, T. N. C. The global pipeline of new medicines for the control and elimination of malaria. Malar. J. 11, 316 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Biamonte, M. A., Wanner, J. & Le Roch, K. G. Recent advances in malaria drug discovery. Bioorg. Med. Chem. Lett. 23, 2829–2843 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Alonso, P. L. et al. A research agenda to underpin malaria eradication. PLoS Med. 8, e1000406 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. malERA Consultative Group on Drugs. A research agenda for malaria eradication: drugs. PLoS Med. 8, e1000402 (2011).

  10. Burrows, J. N., Hooft van Huijsduijnen, R., Möhrle, J. J., Oeuvray, C. & Wells, T. N. C. Designing the next generation of medicines for malaria control and eradication. Malar. J. 12, 187 (2013). Defines the various target compound and product profiles for the different types of antimalarials and their rationale.

    PubMed  PubMed Central  Google Scholar 

  11. Engwerda, C. R., Minigo, G., Amante, F. H. & McCarthy, J. S. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol. 28, 515–521 (2012). Describes a revolutionary translational tool to establish the efficacy and pharmacodynamics of candidate antimalarials in subclinically infected volunteers.

    PubMed  Google Scholar 

  12. Bosman, A. & Mendis, K. N. A major transition in malaria treatment: the adoption and deployment of artemisinin-based combination therapies. Am. J. Trop. Med. Hyg. 77 (Suppl. 6), 193–197 (2007).

    PubMed  Google Scholar 

  13. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    CAS  PubMed  Google Scholar 

  14. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Phyo, A. P. et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379, 1960–1966 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014). Describes the discovery of the genetic basis of resistance against artemisinins.

    PubMed  Google Scholar 

  17. Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nature Genet. 47, 226–234 (2015).

    CAS  PubMed  Google Scholar 

  18. Straimer, J. et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Jong-wook, L. Global health improvement and WHO: shaping the future. Lancet 362, 2083–2088 (2003).

    PubMed  PubMed Central  Google Scholar 

  20. Owens, S. Malaria and the millennium development goals. Arch. Dis. Child. 100 (Suppl. 1), 53–56 (2015).

    Google Scholar 

  21. Roll Back Malaria Partnership. Key facts, figures and strategies. Roll Back Malaria [online], (2008).

  22. Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. 2004, CD000363 (2004).

    Google Scholar 

  23. Cohen, J. M. et al. Malaria resurgence: a systematic review and assessment of its causes. Malar. J. 11, 122 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Roll Back Malaria Partnership. The global malaria action plan for a malaria-free world. Roll Back Malaria [online], (2008).

  25. Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 1691–1696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014). Provides a snapshot of the extent and spread of resistance against artemisinins.

    PubMed  PubMed Central  Google Scholar 

  27. Bethell, D. et al. Artesunate dose escalation for the treatment of uncomplicated malaria in a region of reported artemisinin resistance: a randomized clinical trial. PLoS ONE 6, e19283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gatton, M. L., Martin, L. B. & Cheng, Q. Evolution of resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum. Antimicrob. Agents Chemother. 48, 2116–2123 (2004). Describes the mechanism and spread of resistance to the sulfadoxine–pyrimethamine combination.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vinayak, S. et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog. 6, e1000830 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Harrington, W. E., Mutabingwa, T. K., Kabyemela, E., Fried, M. & Duffy, P. E. Intermittent treatment to prevent pregnancy malaria does not confer benefit in an area of widespread drug resistance. Clin. Infect. Dis. 53, 224–230 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Steketee, R. W. & ter Kuile, F. Single low-dose primaquine to reduce malaria transmission. Lancet Infect. Dis. 14, 91–92 (2014).

    CAS  PubMed  Google Scholar 

  32. Baird, J. K. Neglect of Plasmodium vivax malaria. Trends Parasitol. 23, 533–539 (2007). Highlights the burden and drug discovery efforts against P. vivax.

    PubMed  Google Scholar 

  33. Bolchoz, L. J., Budinsky, R. A., McMillan, D. C. & Jollow, D. J. Primaquine-induced hemolytic anemia: formation and hemotoxicity of the arylhydroxylamine metabolite 6-methoxy-8-hydroxylaminoquinoline. J. Pharmacol. Exp. Ther. 297, 509–515 (2001). Describesprimaquine-induced complications.

    CAS  PubMed  Google Scholar 

  34. Llanos-Cuentas, A. et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet 383, 1049–1058 (2014).

    CAS  PubMed  Google Scholar 

  35. Price, R. N. & Nosten, F. Single-dose radical cure of Plasmodium vivax: a step closer. Lancet 383, 1020–1021 (2014).

    PubMed  Google Scholar 

  36. Gesase, S. et al. High resistance of Plasmodium falciparum to sulphadoxine/pyrimethamine in Northern Tanzania and the emergence of dhps resistance mutation at codon 581. PLoS ONE 4, e4569 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Adam, I., Khamis, A. H. & Elbashir, M. I. Prevalence and risk factors for Plasmodium falciparum malaria in pregnant women of eastern Sudan. Malar. J. 4, 18 (2005).

    PubMed  PubMed Central  Google Scholar 

  38. Masaninga, F. et al. Review of the malaria epidemiology and trends in Zambia. Asian Pac. J. Trop. Biomed. 3, 89–94 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Biot, C. et al. The antimalarial ferroquine: from bench to clinic. Parasite 18, 207–214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Supan, C. et al. Pharmacokinetics of ferroquine, a novel 4-aminoquinoline, in asymptomatic carriers of Plasmodium falciparum infections. Antimicrob. Agents Chemother. 56, 3165–3173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chavain, N. et al. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol. Pharm. 5, 710–716 (2008).

    CAS  PubMed  Google Scholar 

  42. Zhu, C. & Cook, S. P. A concise synthesis of (+)-artemisinin. J. Am. Chem. Soc. 134, 13577–13579 (2012).

    CAS  PubMed  Google Scholar 

  43. Kopetzki, D., Levesque, F. & Seeberger, P. H. A continuous-flow process for the synthesis of artemisinin. Chemistry 19, 5450–5456 (2013).

    CAS  PubMed  Google Scholar 

  44. Levesque, F. & Seeberger, P. H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. Engl. 51, 1706–1709 (2012).

    CAS  PubMed  Google Scholar 

  45. Valecha, N. et al. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin. Infect. Dis. 55, 663–671 (2012).

    CAS  PubMed  Google Scholar 

  46. Noedl, H. The need for new antimalarial drugs less prone to resistance. Curr. Pharm. Design 19, 266–269 (2013).

    CAS  Google Scholar 

  47. Dondorp, A. M. et al. Artemisinin resistance: current status and scenarios for containment. Nature Rev. Microbiol. 8, 272–280 (2010).

    CAS  Google Scholar 

  48. Witkowski, B. et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob. Agents Chemother. 57, 914–923 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. White, T. E., Bushdid, P. B., Ritter, S., Laffan, S. B. & Clark, R. L. Artesunate-induced depletion of embryonic erythroblasts precedes embryolethality and teratogenicity in vivo. Birth Defects Res. B Dev. Reprod. Toxicol. 77, 413–429 (2006).

    CAS  PubMed  Google Scholar 

  50. Nagelschmitz, J. et al. First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob. Agents Chemother. 52, 3085–3091 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. O'Neill, P. M. et al. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. Angew. Chem. Int. Ed. Engl. 49, 5693–5697 (2010).

    CAS  PubMed  Google Scholar 

  52. Mzayek, F. et al. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clin. Trials 2, e6 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Thelingwani, R., Bonn, B., Chibale, K. & Masimirembwa, C. Physicochemical and drug metabolism characterization of a series of 4-aminoquinoline-3-hydroxypyridin-4-one hybrid molecules with antimalarial activity. Expert Opin. Drug Metab. Toxicol. 10, 1313–1324 (2014).

    CAS  PubMed  Google Scholar 

  54. van Noord, C., Eijgelsheim, M. & Stricker, B. H. Drug- and non-drug-associated QT interval prolongation. Br. J. Clin. Pharmacol. 70, 16–23 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zani, B., Gathu, M., Donegan, S., Olliaro, P. L. & Sinclair, D. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst. Rev. 1, CD010927 (2014).

    Google Scholar 

  56. Wells, T. N. C. Is the tide turning for new malaria medicines? Science 329, 1153–1154 (2010).

    CAS  PubMed  Google Scholar 

  57. Coteron, J. M. et al. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J. Med. Chem. 54, 5540–5561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Deng, X. et al. Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J. Biol. Chem. 284, 26999–27009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McCarthy, J. S. et al. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS ONE 6, e21914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Meister, S. et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334, 1372–1377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gamo, F. J. et al. Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305–310 (2010). Describes how access to nearly 2 million compounds from GlaxoSmithKline resulted in the discovery of thousands of new inhibitors against Plasmodium spp.

    CAS  PubMed  Google Scholar 

  62. Guiguemde, W. A. et al. Chemical genetics of Plasmodium falciparum. Nature 465, 311–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Spangenberg, T. et al. The open access malaria box: a drug discovery catalyst for neglected diseases. LoS ONE 8, e62906 (2013).

    CAS  Google Scholar 

  64. Avery, V. M. et al. Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar. J. 13, 190 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Rottmann, M. et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 329, 1175–1180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yeung, B. K. et al. Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem. 53, 5155–5164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Spillman, N. J. et al. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13, 227–237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Krishna, S. et al. Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J. Biol. Chem. 276, 10782–10787 (2001).

    CAS  PubMed  Google Scholar 

  69. Leong, F. J. et al. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial spiroindolone KAE609 (cipargamin), to assess the safety, tolerability and pharmacokinetics in healthy adult volunteers. Antimicrob. Agents Chemother. 58, 6209–6214 (2014). Describes the Phase I study of KAE609.

    PubMed  PubMed Central  Google Scholar 

  70. White, N. J. et al. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med. 371, 403–410 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Cully, M. Trial watch: next-generation antimalarial from phenotypic screen shows clinical promise. Nature Rev. Drug Discov. 13, 717 (2014).

    CAS  Google Scholar 

  72. Flannery, E. L., Chatterjee, A. K. & Winzeler, E. A. Antimalarial drug discovery — approaches and progress towards new medicines. Nature Rev. Microbiol. 11, 849–862 (2013).

    CAS  Google Scholar 

  73. Das, S. et al. in The Annual Symposium of the Institute for Molecular Medicine & Infectious Disease Abstract B11, 46 (Drexel Univ. College of Medicine, 2014).

    Google Scholar 

  74. Vaidya, A. B. et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature Commun. 5, 5521 (2014).

    CAS  Google Scholar 

  75. Jimenez-Diaz, M. B. et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl Acad. Sci. USA 111, E5455–E5462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lehane, A. M., Ridgway, M. C., Baker, E. & Kirk, K. Diverse chemotypes disrupt ion homeostasis in the malaria parasite. Mol. Microbiol. 94, 327–339 (2014).

    CAS  PubMed  Google Scholar 

  77. Younis, Y. et al. 3,5-diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J. Med. Chem. 55, 3479–3487 (2012).

    CAS  PubMed  Google Scholar 

  78. Ghidelli-Disse, S. et al. Identification of Plasmodium PI4 kinase as target of MMV390048 by chemoproteomics. Malar. J. 13, S21 (2014).

    Google Scholar 

  79. McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013). Describes the discovery of PfATP4 as an antimalarial drug target.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Google Scholar 

  81. Gileadi, O. et al. The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. J. Struct. Funct. Genom. 8, 107–119 (2007).

    CAS  Google Scholar 

  82. Mullard, A. European lead factory opens for business. Nature Rev. Drug Discov. 12, 173–175 (2013).

    Google Scholar 

  83. Carroll, J. Will combinatorial chemistry keep its promise? Biotechnol. Healthc. 2, 26–32 (2005).

    PubMed  PubMed Central  Google Scholar 

  84. Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nature Rev. Drug Discov. 2, 222–230 (2003).

    Google Scholar 

  85. Wells, T. N. Natural products as starting points for future anti-malarial therapies: going back to our roots? Malar. J. 10 (Suppl. 1), 3 (2011).

    Google Scholar 

  86. Wells, T. N. Discovering and developing new medicines for malaria control and elimination. Infect. Disord. Drug Targets 13, 292–302 (2013).

    CAS  PubMed  Google Scholar 

  87. Holmes, D. The GHIT fund shows its cards. Nature Rev. Drug Discov. 12, 894 (2013).

    Google Scholar 

  88. Slingsby, B. T. & Kurokawa, K. The Global Health Innovative Technology (GHIT) Fund: financing medical innovations for neglected populations. Lancet Glob. Health 1, e184–e185 (2013).

    CAS  PubMed  Google Scholar 

  89. Zhang, Y. K. et al. Synthesis and structure–activity relationships of novel benzoxaboroles as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 21, 644–651 (2011).

    CAS  PubMed  Google Scholar 

  90. Duffy, S. & Avery, V. M. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar. J. 12, 408 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Dembele, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nature Med. 20, 307–312 (2014).

    CAS  PubMed  Google Scholar 

  92. March, S. et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14, 104–115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hayden, F. G. Experimental human influenza: observations from studies of influenza antivirals. Antivir. Ther. 17, 133–141 (2012).

    CAS  PubMed  Google Scholar 

  94. Atmar, R. L. et al. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14, 1553–1557 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Cordey, S. et al. Rhinovirus genome evolution during experimental human infection. PLoS ONE 5, e10588 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Spring, M., Polhemus, M. & Ockenhouse, C. Controlled human malaria infection. J. Infect. Dis. 209 (Suppl. 2), 40–45 (2014).

    Google Scholar 

  97. Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    CAS  PubMed  Google Scholar 

  98. Bousema, T. et al. Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS ONE 7, e42821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Price, R. N., Baird, J. K. & Hay, S. I. The Epidemiology of Plasmodium vivax: History, Hiatus and Hubris (eds. Rollinson, D. & Stothard, R.) (Elsevier, 2012).

    Google Scholar 

  100. Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genom. Hum. Genet. 9, 403–433 (2008).

    CAS  Google Scholar 

  101. Ma, Q. & Lu, A. Y. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol. Rev. 63, 437–459 (2011).

    CAS  PubMed  Google Scholar 

  102. Pang, T. Impact of pharmacogenomics on neglected diseases of the developing world. Am. J. Pharmacogenomics 3, 393–398 (2003).

    PubMed  Google Scholar 

  103. Schuhmacher, A., Germann, P. G., Trill, H. & Gassmann, O. Models for open innovation in the pharmaceutical industry. Drug Discov. Today 18, 1133–1137 (2013).

    PubMed  Google Scholar 

  104. Murphy, R. C. et al. Discovery of potent and selective inhibitors of calcium-dependent protein kinase 1 (CDPK1) from C. parvum and T. gondii. ACS Med. Chem. Lett. 1, 331–335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bessoff, K. et al. Identification of Cryptosporidium parvum active chemical series by repurposing the open access malaria box. Antimicrob. Agents Chemother. 58, 2731–2739 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Boyom, F. F. et al. Repurposing the open access malaria box to discover potent inhibitors of Toxoplasma gondii and Entamoeba histolytica. Antimicrob. Agents Chemother. 58, 5848–5854 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Aleman Resto, Y. & Fernandez Robledo, J. A. Identification of MMV malaria box inhibitors of Perkinsus marinus using an ATP-based bioluminescence assay. PLoS ONE 9, e111051 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Ingram-Sieber, K. et al. Orally active antischistosomal early leads identified from the open access malaria box. PLoS Negl. Trop. Dis. 8, e2610 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Doolan, D. L., Dobano, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rappuoli, R. & Aderem, A. A. 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473, 463–469 (2011).

    CAS  PubMed  Google Scholar 

  111. RTS,S Clinical Trials Partnership. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 11, e1001685 (2014).

  112. World Health Organization. Global malaria vaccine pipeline. WHO[online], (2014).

  113. Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    CAS  PubMed  Google Scholar 

  114. McAllister, M. M. Successful vaccines for naturally occurring protozoal diseases of animals should guide human vaccine research. A review of protozoal vaccines and their designs. Parasitology 141, 624–640 (2014).

    PubMed  Google Scholar 

  115. Petrovsky, N. & Aguilar, J. C. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82, 488–496 (2004).

    CAS  PubMed  Google Scholar 

  116. Alving, C. R., Peachman, K. K., Rao, M. & Reed, S. G. Adjuvants for human vaccines. Curr. Opin. Immunol. 24, 310–315 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kyes, S. A., Kraemer, S. M. & Smith, J. D. Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family. Eukaryot. Cell 6, 1511–1520 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kyes, S. et al. Plasmodium falciparum var gene expression is developmentally controlled at the level of RNA polymerase II-mediated transcription initiation. Mol. Microbiol. 63, 1237–1247 (2007).

    CAS  PubMed  Google Scholar 

  119. Stockdale, C., Swiderski, M. R., Barry, J. D. & McCulloch, R. Antigenic variation in Trypanosoma brucei: joining the DOTs. PLoS Biol. 6, e185 (2008).

    PubMed  PubMed Central  Google Scholar 

  120. Ubben, D. & Poll, E. M. MMV in partnership: the Eurartesim® experience. Malar. J. 12, 211 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Dondorp, A. et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366, 717–725 (2005).

    PubMed  Google Scholar 

  122. Dondorp, A. M. et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376, 1647–1657 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ritchie, E. C., Block, J. & Nevin, R. L. Psychiatric side effects of mefloquine: applications to forensic psychiatry. J. Am. Acad. Psychiatry Law 41, 224–235 (2013).

    PubMed  Google Scholar 

  124. Tansley, R. et al. A randomized, double-blind, placebo-controlled study to investigate the safety, tolerability, and pharmacokinetics of single enantiomer (+)-mefloquine compared with racemic mefloquine in healthy persons. Am. J. Trop. Med. Hyg. 83, 1195–1201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Peters, P. J., Thigpen, M. C., Parise, M. E. & Newman, R. D. Safety and toxicity of sulfadoxine/pyrimethamine: implications for malaria prevention in pregnancy using intermittent preventive treatment. Drug Saf. 30, 481–501 (2007).

    CAS  PubMed  Google Scholar 

  126. Meremikwu, M. M., Donegan, S., Sinclair, D., Esu, E. & Oringanje, C. Intermittent preventive treatment for malaria in children living in areas with seasonal transmission. Cochrane Database Syst. Rev. 2, CD003756 (2012).

    Google Scholar 

  127. Bueno, J. M. et al. Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Med. Chem. 4, 2311–2323 (2012).

    CAS  PubMed  Google Scholar 

  128. Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1 . Proc. Natl Acad. Sci. USA 112, 755–760 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Powles, M. A. et al. MK-4815, a potential new oral agent for treatment of malaria. Antimicrob. Agents Chemother. 56, 2414–2419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Macareo, L. et al. Triangular test design to evaluate tinidazole in the prevention of Plasmodium vivax relapse. Malar. J. 12, 173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bousejra-El Garah, F., Claparols, C., Benoit-Vical, F., Meunier, B. & Robert, A. The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob. Agents Chemother. 52, 2966–2969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dwivedi, A. et al. Role of type-II pathway in apoptotic cell death induction by photosensitized CDRI-97/78 under ambient exposure of UV-B. Toxicol. Lett. 222, 122–131 (2013).

    CAS  PubMed  Google Scholar 

  133. Kushwaha, H. N. et al. Intersex effect of lamotrigine on the pharmacokinetic parameters of CDRI-97/78, a novel trioxane antimalarial compound, in rats. Arzneimittelforschung 62, 274–279 (2012).

    CAS  PubMed  Google Scholar 

  134. Kushwaha, H. N. et al. Effect of carbamazepine on the pharmacokinetic parameters of CDRI-97/78 following coadministration to rats. Drug Res. (Stuttg.) 63, 282–288 (2013).

    CAS  Google Scholar 

  135. Shafiq, N. et al. Single ascending dose safety and pharmacokinetics of CDRI-97/78: first-in-human study of a novel antimalarial drug. Malar. Res. Treat. 2014, 372521 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mombo-Ngoma, G. et al. Phase I randomized dose-ascending placebo-controlled trials of ferroquine — a candidate anti-malarial drug — in adults with asymptomatic Plasmodium falciparum infection. Malar. J. 10, 53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lanaspa, M. et al. Inadequate efficacy of a new formulation of fosmidomycin–clindamycin combination in Mozambican children less than three years old with uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother. 56, 2923–2928 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lakshminarayana, S. B. et al. Pharmacokinetics–pharmacodynamics analysis of spiroindolone analogs and KAE609 in a murine malaria model. Antimicrob. Agents Chemother. 59, 1200–1210 (2014).

    PubMed  Google Scholar 

  139. Kuhen, K. L. et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment and prevention of disease transmission. Antimicrob. Agents Chemother. 58, 5060–5067 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Guttmann, P. & Ehrlich, P. Über die wirkung des methylenblau bei malaria. Berliner Klinische Wochenschrift 28, 953–956 (in German) (1891).

    Google Scholar 

  141. Coulibaly, B. et al. Efficacy and safety of triple combination therapy with artesunate-amodiaquine-methylene blue for falciparum malaria in children: a randomized controlled trial in Burkina Faso. J. Infect. Dis. 211, 689–687 (2014).

    PubMed  Google Scholar 

  142. Ciana, C. L. et al. Novel in vivo active anti-malarials based on a hydroxy-ethyl-amine scaffold. Bioorg. Med. Chem. Lett. 23, 658–662 (2013).

    CAS  PubMed  Google Scholar 

  143. Bruderer, S. et al. First-in-humans study of the safety, tolerability, and pharmacokinetics of ACT-451840, a new chemical entity with antimalarial activity. Antimicrob. Agents Chemother. 59, 935–942 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Nanayakkara, N. P. et al. Antiparasitic activities and toxicities of individual enantiomers of the 8-aminoquinoline 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-[3,4-dichlorophenoxy]quinoline succinate. Antimicrob. Agents Chemother. 52, 2130–2137 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Marcsisin, S. R. et al. Tafenoquine and NPC-1161B require CYP2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malar. J. 13, 2 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Marti, F. et al. Second generation analogues of RKA182: synthetic tetraoxanes with outstanding in vitro and in vivo antimalarial activities. MedChemComm 2, 661–665 (2011).

    CAS  Google Scholar 

  147. Copple, I. M. et al. Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarials. Mol. Med. 18, 1045–1055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yuthavong, Y. et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl Acad. Sci. USA 109, 16823–16828 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jomaa, H. et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576 (1999).

    CAS  PubMed  Google Scholar 

  150. Deng, X. et al. Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J. Med. Chem. 57, 5381–5394 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. da Cruz, F. P. et al. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis. 205, 1278–1286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Nam, T. G. et al. A chemical genomic analysis of decoquinate, a Plasmodium falciparum cytochrome b inhibitor. ACS Chem. Biol. 6, 1214–1222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, J., Kaiser, M. & Copp, B. R. Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents. Mar. Drugs 12, 3138–3160 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Salas-Sarduy, E. et al. Antiparasitic effect of a fraction enriched in tight-binding protease inhibitors isolated from the Caribbean coral Plexaura homomalla. Exp. Parasitol. 135, 611–622 (2013).

    CAS  PubMed  Google Scholar 

  155. Hansen, F. K. et al. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur. J. Med. Chem. 82, 204–213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Trenholme, K. et al. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules. Antimicrob. Agents Chemother. 58, 3666–3678 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Sumanadasa, S. D. et al. Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob. Agents Chemother. 56, 3849–3856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Jaudzems, K. et al. Plasmepsin inhibitory activity and structure-guided optimization of a potent hydroxyethylamine-based antimalarial hit. ACS Med. Chem. Lett. 5, 373–377 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Meyers, M. J. et al. Evaluation of aminohydantoins as a novel class of antimalarial agents. ACS Med. Chem. Lett. 5, 89–93 (2014).

    CAS  PubMed  Google Scholar 

  160. McCarthy, J. S. et al. A Phase I/Ib study to investigate the safety, tolerability and pharmacokinetic profile of DSM265 in healthy subjects and then its antimalarial activity in induced blood stage Plasmodium falciparum infection. ASTMH Ann. Meeting Abstr. 675, 204–205 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank the MMV team for helpful discussion, as well as our partners in the many projects and the continued support of our External Scientific Advisory Committees. We thank the reviewers of the original manuscript for many insightful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy N. C. Wells.

Ethics declarations

Competing interests

All the authors are salaried (T.N.C.W.) or financially supported (R.H.v.H. and W.V.V.) by the Medicines for Malaria Venture, which has a stake in developing many of the drugs cited in this Review.

Related links

PowerPoint slides

Glossary

Chemotypes

Families of molecules with similar chemical structures that share biological or therapeutic effects. Many distinct chemotypes may have the same biological activity.

Chemoprotection

In the context of malaria, chemoprotection refers to medicines that prevent healthy individuals from contracting malaria. Such drugs are used by travellers but are also considered for mass eradication campaigns.

Target candidate profiles

A specific set of quantitative criteria that a molecule must be predicted of achieving before it is considered for development. These criteria typically involve biological activity, pharmacokinetics and, in malaria, cost of goods. The target product profile is the definition of the specifications for the final medicine, which, for malaria, may consist of several active molecules.

Herd immunity

Immune protection that occurs when an entire population, including those without immunity themselves, is protected from an infectious disease owing to the high rate of immunity within that population.

Stringent regulatory authorities

Regulatory agencies from the European Union (for example, the European Medicines Agency), the USA (the Food and Drug Administration) and Japan (the Ministry of Health, Labour, and Welfare), all of which are members of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), and other agencies that adhere to the same guidelines, such as in Switzerland, Australia and Canada.

Prequalified

The WHO (World Health Organization) prequalification process is a formal assessment of diagnostics, medicines and vaccines, including review of the clinical dossier and the manufacturing and stability data, and site visits to manufacturers. This is a centralized procedure to approve products for purchase by specialized agencies of the United Nations.

Blood stages

Early steps in the asexual, intra-erythrocytic replication cycle include the attachment of the Plasmodium spp. merozoites to blood cells, reorientation, irreversible attachment, junction formation, parasitophorous vacuole formation and invasion. The resulting immature trophozoite ring stage progresses into the mature tro-phozoite and schizont stages, which ruptures the blood cell to release new merozoites.

Standard membrane feeding assays

Assays that measure the transmission of Plasmodium parasites back to mosquitoes; the insects' uptake of blood gametocytes and their successful mating is measured by counting (post-zygotic) midgut oocysts (the only route to re-infection). These assays involve mosquitoes feeding on human blood or serum through a membrane.

Hypnozoites

Latent liver stages of Plasmodium vivax and Plasmodium ovale, species that are predominant in South and Southeast Asia and South America but only in Ethiopia and Sudan in Africa. Hypnozoites can remain dormant for weeks or even years, and carriers remain symptom-free until a relapse occurs.

Human experimentally induced infection model

A model for malaria in which human volunteers are infected with Plasmodium parasites either by injection with infected erythrocytes (or sporozoites) or from the bite of an infected mosquito. Valuable pharmacokinetic and pharmacodynamic information of candidate drugs can thus be obtained at safe, well-monitored parasitaemia levels that are many orders of magnitude below those that induce symptoms.

Heteroatoms

In organic chemistry, this term refers to all atoms that are not C or H. In the context of medicinal chemistry, novel heteroatoms refer to atoms not usually found in drugs (which are C, H, O, N, S and halogens).

Gametocytes

Asexually replicating Plasmodium parasites in erythrocytes occasionally differentiate into gametocytes. These forms of the parasite are the only forms that can be taken up by mosquitoes, mate and propagate disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, T., van Huijsduijnen, R. & Van Voorhis, W. Malaria medicines: a glass half full?. Nat Rev Drug Discov 14, 424–442 (2015). https://doi.org/10.1038/nrd4573

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd4573

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research