Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily

Abstract

Among the most serious consequences of diabetes mellitus is the development of diabetic angiopathy, of which the clinical features are cardiovascular disease, retinopathy, nephropathy and neuropathy. Diabetic kidney problems affect up to one third of all patients with diabetes mellitus and are a major cause of end-stage renal failure. Although a huge number of pharmaceutical interventions are available today, diabetic angiopathy remains a leading cause of mortality and morbidity in diabetes mellitus, therefore, an urgent need exists to develop new therapeutic strategies. Recent data support the hypothesis that dysregulation of the complement system and of members of the tumor necrosis factor (TNF) superfamily may be involved in the development of diabetic vascular complications. The mannose-binding lectin pathway—an overall regulatory component of the complement system—is a particularly promising biomarker as it is directly involved in the development of diabetic angiopathy. In addition, two components of the TNF superfamily, namely TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and osteoprotegerin, may be involved in the pathogenesis of diabetic angiopathy. Several ways of specifically manipulating the complement and TNF superfamily systems already exist, but whether or not these drugs provide new targets for intervention for late diabetic complications is still to be revealed.

Key Points

  • The development of diabetic angiopathy has serious individual and societal consequences because of the substantial impact on morbidity and mortality

  • Despite lifestyle changes and drug intervention against hyperglycemia, hypertension and dyslipidemia, microvascular and macrovascular complications are still a clinical problem in patients with diabetes mellitus

  • An ongoing need exists to develop better risk markers of diabetic angiopathy and drugs that act more specifically

  • Emerging evidence supports a role of the complement system and of members of the tumor necrosis factor superfamily in the pathogenesis of diabetic vascular complications

  • Mannose-binding lectin and osteoprotegerin are strong and independent biomarkers of microvascular and macrovascular complications in diabetes mellitus

  • Agonists and antagonists against components of the complement system and the tumor necrosis factor superfamily may prove effective in the treatment of diabetic vascular complications

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of the complement system, which can be activated through three different pathways.
Figure 2: Serum level of MBL is a strong predictor of both the development of albuminuria and overall mortality in patients with type 2 diabetes mellitus (T2DM).
Figure 3: Schematic depiction of the actions and interactions between the TNF superfamily components: TRAIL, TRAIL receptors 1 to 4, osteoprotegerin, RANKL and RANK.
Figure 4: Osteoprotegerin level is a strong predictor of late diabetic complications and mortality.

Similar content being viewed by others

References

  1. International Diabetes Federation (IDF). Diabetes Atlas, 4th Edn. http://www.diabetesatlas.org/map (2009).

  2. Rydén, L. et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 28, 88–136 (2007).

    Article  Google Scholar 

  3. US Renal Data System. USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA, 2008).

  4. Van Dijk, P. C. et al. Renal replacement therapy for diabetic end-stage renal disease: data from 10 registries in Europe (1991–2000). Kidney Int. 67, 1489–1499 (2005).

    Article  Google Scholar 

  5. Stewart, J. H. et al. Trends in incidence of treated end-stage renal disease, overall and by primary renal disease, in persons aged 20–64 years in Europe, Canada and the Asia-Pacific region, 1998–2002. Nephrology 12, 520–527 (2007).

    Article  Google Scholar 

  6. Pfützner, A. & Forst, T. High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol. Ther. 8, 28–36 (2006).

    Article  Google Scholar 

  7. Schalkwijk, C. G. et al. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia 42, 351–357 (1999).

    Article  CAS  Google Scholar 

  8. Turner, M. W. The role of mannose-binding lectin in health and disease. Mol. Immunol. 40, 423–429 (2003).

    Article  CAS  Google Scholar 

  9. Thiel, S. et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386, 506–510 (1997).

    Article  CAS  Google Scholar 

  10. Law, S. K. A. & Reid, K. B. M. Complement, 2nd Edn (IRL Press at Oxford University Press, Oxford, 1995).

    Google Scholar 

  11. Bianco, C., Griffin, F. M. Jr & Silverstein, S. C. Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. J. Exp. Med. 141, 1278–1290 (1975).

    Article  CAS  Google Scholar 

  12. Griffin, F. M. Jr, Bianco, C. & Silverstein, S. C. Characterization of the macrophage receptor for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G. J. Exp. Med. 141, 1269–1277 (1975).

    Article  Google Scholar 

  13. Østergaard, J. et al. Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 50, 1541–1549 (2007).

    Article  Google Scholar 

  14. Busche, M. N., Walsh, M. C., McMullen, M. E., Guikema, B. J. & Stahl, G. L. Mannose-binding lectin plays a critical role in myocardial ischaemia and reperfusion injury in a mouse model of diabetes. Diabetologia 51, 1544–1551 (2008).

    Article  CAS  Google Scholar 

  15. Hansen, T. K. et al. Association between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 53, 1570–1576 (2004).

    Article  CAS  Google Scholar 

  16. Hansen, T. K. et al. Elevated levels of mannan-binding lectin in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 88, 4857–4861 (2003).

    Article  CAS  Google Scholar 

  17. Saraheimo, M. et al. Increased levels of mannan-binding lectin in type 1 diabetic patients with incipient and overt nephropathy. Diabetologia 48, 198–202 (2005).

    Article  CAS  Google Scholar 

  18. Hansen, T. K. et al. Mannose-binding lectin genotype and serum concentrations predict mortality in type 1 diabetes. Presented at the 66th Scientific session of the American Diabetes Organisation Washington, USA (2006).

  19. Hovind, P. et al. Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes 54, 1523–1527 (2005).

    Article  CAS  Google Scholar 

  20. Berger, S. P. et al. Low pretransplantation mannose-binding lectin levels predict superior patient and graft survival after simultaneous pancreas-kidney transplantation. J. Am. Soc. Nephrol. 18, 2416–2422 (2007).

    Article  CAS  Google Scholar 

  21. Hansen, T. K. et al. Mannose-binding lectin and mortality in type 2 diabetes. Arch. Intern. Med. 166, 2007–2013 (2006).

    Article  CAS  Google Scholar 

  22. Wehner, H., Höhn, D., Faix-Schade, U., Huber, H. & Walzer, P. Glomerular changes in mice with spontaneous hereditary diabetes. Lab. Invest. 27, 331–340 (1972).

    CAS  PubMed  Google Scholar 

  23. Mauer, S. M. et al. Pancreatic islet transplantation. Effects on the glomerular lesions of experimental diabetes in the rat. Diabetes 23, 748–753 (1974).

    Article  CAS  Google Scholar 

  24. Mauer, S. M. et al. Studies of the rate of regression of the glomerular lesions in diabetic rats treated with pancreatic islet transplantation. Diabetes 24, 280–285 (1975).

    Article  CAS  Google Scholar 

  25. Lee, C. S. et al. Renal transplantation in diabetes mellitus in rats. J. Exp. Med. 139, 793–800 (1974).

    Article  CAS  Google Scholar 

  26. Fujita, T. et al. Complement activation accelerates glomerular injury in diabetic rats. Nephron 81, 208–214 (1999).

    Article  CAS  Google Scholar 

  27. Chiarelli, F., Verrotti, A., La Penna, G. & Morgese, G. Low serum C4 concentrations in type-1 diabetes mellitus. Eur. J. Pediatr. 147, 197–198 (1988).

    Article  CAS  Google Scholar 

  28. Barnett, A. H. et al. Low plasma C4 concentrations: association with microangiopathy in insulin dependent diabetes. Br. Med. J. (Clin. Res. Ed.) 289, 943–945 (1984).

    Article  CAS  Google Scholar 

  29. Falk, R. J. et al. Ultrastructural localization of the membrane attack complex of complement in human renal tissues. Am. J. Kidney Dis. 9, 121–128 (1987).

    Article  CAS  Google Scholar 

  30. Haahr-Pedersen, S. et al. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention. J. Invasive Cardiol. 21, 13–19 (2009).

    PubMed  Google Scholar 

  31. Qin, X. et al. Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53, 2653–2661 (2004).

    Article  CAS  Google Scholar 

  32. Zauli, G. & Secchiero, P. The role of the TRAIL/TRAIL receptors system in hematopoiesis and endothelial cell biology. Cytokine Growth Factor Rev. 17, 245–257 (2006).

    Article  CAS  Google Scholar 

  33. Lorz, C., Benito, A., Ucero, A. C., Santamaría, B. & Ortiz, A. TRAIL and kidney disease. Front. Biosci. 14, 3740–3749 (2009).

    Article  CAS  Google Scholar 

  34. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  Google Scholar 

  35. Emery, J. G. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363–14367 (1998).

    Article  CAS  Google Scholar 

  36. Lorz, C. et al. The death ligand TRAIL in diabetic nephropathy. J. Am. Soc. Nephrol. 19, 904–914 (2008).

    Article  CAS  Google Scholar 

  37. Sanchez-Niño, M. D. et al. The MIF receptor CD74 in diabetic podocyte injury. J. Am. Soc. Nephrol. 20, 353–362 (2009).

    Article  Google Scholar 

  38. Benito-Martín, A. et al. Transcriptomics illustrate a deadly TRAIL to diabetic nephropathy [Spanish]. Nefrologia 29, 13–19 (2009).

    PubMed  Google Scholar 

  39. Mi, Q. S. et al. Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice. Diabetes 52, 1967–1975 (2003).

    Article  CAS  Google Scholar 

  40. Lamhamedi-Cherradi, S. E., Zheng, S., Tisch, R. M. & Chen, Y. H. Critical roles of tumor necrosis factor-related apoptosis-inducing ligand in type 1 diabetes. Diabetes 52, 2274–2278 (2003).

    Article  CAS  Google Scholar 

  41. Secchiero, P. et al. Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114, 1522–1530 (2006).

    Article  CAS  Google Scholar 

  42. Michowitz, Y. et al. The involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in atherosclerosis. J. Am. Coll. Cardiol. 45, 1018–1024 (2005).

    Article  CAS  Google Scholar 

  43. Schoppet, M., Sattler, A. M., Schaefer, J. R. & Hofbauer, L. C. Osteoprotegerin (OPG) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in atherosclerosis. Atherosclerosis 184, 446–447 (2006).

    Article  CAS  Google Scholar 

  44. Secchiero, P. et al. Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction. PLoS One 4, e4442 (2009).

    Article  Google Scholar 

  45. Niessner, A. et al. Prognostic value of apoptosis markers in advanced heart failure patients. Eur. Heart J. 30, 789–796 (2009).

    Article  CAS  Google Scholar 

  46. Tyson, K. L. et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 23, 489–494 (2003).

    Article  CAS  Google Scholar 

  47. Schoppet, M. et al. Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Mönckeberg's sclerosis and atherosclerosis. J. Clin. Endocrinol. Metab. 89, 4104–4112 (2004).

    Article  CAS  Google Scholar 

  48. Olesen, P., Ledet, T. & Rasmussen, L. M. Arterial osteoprotegerin: increased amounts in diabetes and modifiable synthesis from vascular smooth muscle cells by insulin and TNF-alpha. Diabetologia 48, 561–568 (2005).

    Article  CAS  Google Scholar 

  49. Olesen, P., Nguyen, K., Wogensen, L., Ledet, T. & Rasmussen, L. M. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am. J. Physiol. Heart Circ. Physiol. 292, H1058–H1064 (2007).

    Article  CAS  Google Scholar 

  50. Hofbauer, L. C. & Schoppet, M. Osteoprotegerin gene polymorphism and the risk of osteoporosis and vascular disease. J. Clin. Endocrinol. Metab. 87, 4078–4079 (2002).

    Article  CAS  Google Scholar 

  51. Clancy, P., Oliver, L., Jayalath, R., Buttner, P. & Golledge, J. Assessment of a serum assay for quantification of abdominal aortic calcification. Arterioscler. Thromb. Vasc. Biol. 26, 2574–2576 (2006).

    Article  CAS  Google Scholar 

  52. Abedin, M. et al. Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am. J. Cardiol. 99, 513–518 (2007).

    Article  CAS  Google Scholar 

  53. Scatena, M. & Giachelli, C. The αvβ3 integrin, NF-κB, osteoprotegerin endothelial cell survival pathway. Potential role in angiogenesis. Trends Cardiovasc. Med. 12, 83–88 (2002).

    Article  CAS  Google Scholar 

  54. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  Google Scholar 

  55. Heinonen, S. E. et al. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia and hypercholesterolemia. Circ. Res. 101, 1058–1067 (2007).

    Article  CAS  Google Scholar 

  56. Vaccarezza, M., Bortul, R., Fadda, R. & Zweyer, M. Increased OPG expression and impaired OPG/TRAIL ratio in the aorta of diabetic rats. Med. Chem. 4, 387–391 (2007).

    Article  Google Scholar 

  57. Takemoto, M. et al. Enhanced expression of osteopontin in human diabetic artery and analysis of its functional role in accelerated atherogenesis. Arterioscler. Thromb. Vasc. Biol. 20, 624–628 (2000).

    Article  CAS  Google Scholar 

  58. Rasmussen, L. M. & Ledet, T. Aortic collagen alterations in human diabetes mellitus. Changes in basement membrane collagen content and in the susceptibility of total collagen to cyanogen bromide solubilisation. Diabetologia 36, 445–453 (1993).

    Article  CAS  Google Scholar 

  59. Heickendorff, L., Ledet, T. & Rasmussen, L. M. Glycosaminoglycans in the human aorta in diabetes mellitus: a study of tunica media from areas with and without atherosclerotic plaque. Diabetologia 37, 286–292 (1994).

    Article  CAS  Google Scholar 

  60. Niskanen, L., Siitonen, O., Suhonen, M. & Uusitupa, M. I. Medial artery calcification predicts cardiovascular mortality in patients with NIDDM. Diabetes Care 17, 1252–1256 (1994).

    Article  CAS  Google Scholar 

  61. Lehto, S., Niskanen, L., Suhonen, M., Rönnemaa, T. & Laakso, M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 16, 978–983 (1996).

    Article  CAS  Google Scholar 

  62. Browner, W. S., Lui, L. Y. & Cummings, S. R. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J. Clin. Endocrinol. Metab. 86, 631–637 (2001).

    CAS  PubMed  Google Scholar 

  63. Galluzzi, F. et al. Osteoprotegerin serum levels in children with type 1 diabetes: a potential modulating role in bone status. Eur. J. Endocrinol. 153, 879–885 (2005).

    Article  CAS  Google Scholar 

  64. Xiang, G. D., Sun, H. L. & Zhao, L. S. Changes of osteoprotegerin before and after insulin therapy in type 1 diabetic patients. Diabetes Res. Clin. Pract. 76, 199–206 (2007).

    Article  CAS  Google Scholar 

  65. Rasmussen, L. M., Tarnow, L., Hansen, T. K., Parving, H. H. & Flyvbjerg, A. Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular morbidity in type 1 diabetic patients. Eur. J. Endocrinol. 154, 75–81 (2006).

    Article  CAS  Google Scholar 

  66. Knudsen, S. T. et al. Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur. J. Endocrinol. 149, 39–42 (2003).

    Article  CAS  Google Scholar 

  67. Xiang, G. D., Xu, L., Zhao, L. S., Yue, L. & Hou, J. The relationship between plasma osteoprotegerin and endothelium-dependent arterial dilation in type 2 diabetes. Diabetes 55, 2126–2131 (2006).

    Article  CAS  Google Scholar 

  68. Avignon, A. et al. Osteoprotegerin is associated with silent coronary artery disease in high-risk asymptomatic type 2 diabetic patients. Diabetes Care 28, 2176–2180 (2005).

    Article  CAS  Google Scholar 

  69. Avignon, A. et al. Osteoprotegerin: a novel independent marker for silent myocardial ischemia in asymptomatic diabetic patients. Diabetes Care 30, 2934–2939 (2007).

    Article  CAS  Google Scholar 

  70. Mikami, S. et al. Serum osteoprotegerin as a screening tool for coronary artery calcification score in diabetic pre-dialysis patients. Hypertens. Res. 31, 1163–1170 (2008).

    Article  CAS  Google Scholar 

  71. Shin, J. Y., Shin, Y. G. & Chung, C. E. Elevated serum osteoprotegerin levels are associated with vascular endothelial dysfunction in type 2 diabetes. Diabetes Care 29, 1664–1666 (2006).

    Article  CAS  Google Scholar 

  72. Jorsal, A. et al. Plasma osteoprotegerin levels predict cardiovascular and all-cause mortality and deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetologia 51, 2100–2107 (2008).

    Article  CAS  Google Scholar 

  73. Anand, D. V., Lahiri, A., Lim, E., Hopkins, D. & Corder, R. The relationship between plasma osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects. J. Am. Coll. Cardiol. 47, 1850–1857 (2006).

    Article  CAS  Google Scholar 

  74. Hjelmesaeth, J. et al. Early posttransplant serum osteoprotegerin levels predict long-term (8-year) patient survival and cardiovascular death in renal transplant patients. J. Am. Soc. Nephrol. 17, 1746–1754 (2006).

    Article  CAS  Google Scholar 

  75. Nellemann, B. et al. Simvastatin reduces plasma osteoprotegerin in type 2 diabetic patients with microalbuminuria. Diabetes Care 30, 3122–3124 (2007).

    Article  CAS  Google Scholar 

  76. Sultan, A. et al. Osteoprotegerin, thiazolidinediones treatment, and silent myocardial ischemia in type 2 diabetic patients. Diabetes Care 31, 593–595 (2008).

    Article  CAS  Google Scholar 

  77. Rasmussen, L. M. & Ledet, T. Osteoprotegerin and diabetic macroangiopathy. Horm. Metab. Res. 37 (Suppl. 1), 90–94 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flyvbjerg, A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 6, 94–101 (2010). https://doi.org/10.1038/nrendo.2009.266

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrendo.2009.266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing