Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From obesity genetics to the future of personalized obesity therapy

A Correction to this article was published on 05 November 2013

This article has been updated

Abstract

Obesity is a disorder characterized by an excess accumulation of body fat resulting from a mismatch between energy intake and expenditure. Incidence of obesity has increased dramatically in the past few years, almost certainly fuelled by a shift in dietary habits owing to the widespread availability of low-cost, hypercaloric foods. However, clear differences exist in obesity susceptibility among individuals exposed to the same obesogenic environment, implicating genetic risk factors. Numerous genes have been shown to be involved in the development of monofactorial forms of obesity. In genome-wide association studies, a large number of common variants have been associated with adiposity levels, each accounting for only a small proportion of the predicted heritability. Although the small effect sizes of obesity variants identified in genome-wide association studies currently preclude their utility in clinical settings, screening for a number of monogenic obesity variants is now possible. Such regular screening will provide more informed prognoses and help in the identification of at-risk individuals who could benefit from early intervention, in evaluation of the outcomes of current obesity treatments, and in personalization of the clinical management of obesity. This Review summarizes current advances in obesity genetics and discusses the future of research in this field and the potential relevance to personalized obesity therapy.

Key Points

  • Individual susceptibility to obesity is strongly influenced by genetic factors

  • Rare monogenic obesity variants of large effect size and common variants of small effect sizes collectively account for only a small proportion of the heritability of adiposity

  • Several copy number variants, both common and rare, have been shown to contribute to individual variation in BMI and increased risk of obesity

  • Genetic variants associated with BMI and obesity identified to date have increased our understanding of the underlying mechanisms by which obesity develops and is maintained

  • Screening for monofactorial obesity variants can provide informed prognoses for patients and opportunities for early intervention and treatment of additional pathologies frequently associated with these forms of obesity

  • Examination of clinical outcomes of interventions such as bariatric surgery in individuals with genetic susceptibility to obesity could permit personalization of obesity therapy in the future

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genetics of BMI and common obesity.
Figure 2: The chromosome 16p11.2 region.

Similar content being viewed by others

Change history

  • 05 November 2013

    In the original published version of this article, the chromosomal positions of the loci in Figure 1b were incorrectly ordered. This error has now been corrected for the HTML and PDF versions of the article.

References

  1. Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197–1209 (2005).

    Article  PubMed  Google Scholar 

  2. World Health Organization. Obesity and overweight [online], (2006).

  3. World Health Organization: Obesity and overweight [online] (2012).

  4. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Friedman, J. M. A war on obesity, not the obese. Science 299, 856–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Turula, M., Kaprio, J., Rissanen, A. & Koskenvuo, M. Body weight in the Finnish Twin Cohort. Diabetes Res. Clin. Pract. 10 (Suppl. 1), S33–S36 (1990).

    Article  PubMed  Google Scholar 

  7. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Stunkard, A. J., Harris, J. R., Pedersen, N. L. & McClearn, G. E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Stunkard, A. J. et al. An adoption study of human obesity. N. Engl. J. Med. 314, 193–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Wardle, J., Carnell, S., Haworth, C. M. & Plomin, R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr. 87, 398–404 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Silventoinen, K. et al. Modification effects of physical activity and protein intake on heritability of body size and composition. Am. J. Clin. Nutr. 90, 1096–1103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blakemore, A. I. & Froguel, P. Investigation of Mendelian forms of obesity holds out the prospect of personalized medicine. Ann. N. Y. Acad. Sci. 1214, 180–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. O'Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Blakemore, A. I. & Froguel, P. Is obesity our genetic legacy? J. Clin. Endocrinol. Metab. 93, S51–S56 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Walley, A. J., Asher, J. E. & Froguel, P. The genetic contribution to non-syndromic human obesity. Nature Rev. Genet. 10, 431–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ingalls, A. M., Dickie, M. M. & Snell, G. D. Obese, a new mutation in the house mouse. J. Hered. 41, 317–318 (1950).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bado, A. et al. The stomach is a source of leptin. Nature 394, 790–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hoggard, N. et al. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem. Biophys. Res. Commun. 232, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Hoggard, N. et al. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc. Natl. Acad. Sci. USA 94, 11073–11078 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB.-R. Cell 83, 1263–1271 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Hummel, K. P., Dickie, M. M. & Coleman, D. L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

    Article  CAS  PubMed  Google Scholar 

  27. Hummel, K. P., Coleman, D. L. & Lane, P. W. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem. Genet. 7, 1–13 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Saeed, S., Butt, T. A., Anwer, M., Arslan, M. & Froguel, P. High prevalence of leptin and melanocortin-4 receptor gene mutations in children with severe obesity from Pakistani consanguineous families. Mol. Genet. Metab. 106, 121–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Ozata, M., Ozdemir, I. C. & Licinio, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gibson, W. T. et al. Congenital leptin deficiency due to homozygosity for the Δ133G mutation: report of another case and evaluation of response to four years of leptin therapy. J. Clin. Endocrinol. Metab. 89, 4821–4826 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Paz-Filho, G. J. et al. Leptin replacement improves cognitive development. PLoS ONE 3, e3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strobel, A., Issad, T., Camoin, L., Ozata, M. & Strosberg, A. D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 18, 213–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Farooqi, I. S. & O'Rahilly, S. Monogenic obesity in humans. Annu. Rev. Med. 56, 443–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Farooqi, I. S. & O'Rahilly, S. Leptin: a pivotal regulator of human energy homeostasis. Am. J. Clin. Nutr. 89, 980S–984S (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Farooqi, I. S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N. Engl. J. Med. 356, 237–247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Mazen, I., El-Gammal, M., Abdel-Hamid, M., Farooqi, I. S. & Amr, K. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity. Mol. Genet. Metab. 102, 461–4 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Pritchard, L. E., Turnbull, A. V. & White, A. Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J. Endocrinol. 172, 411–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Krude, H. & Gruters, A. Implications of proopiomelanocortin (POMC) mutations in humans: the POMC deficiency syndrome. Trends Endocrinol. Metab. 11, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Challis, B. G. et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum. Mol. Genet. 11, 1997–2004 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Creemers, J. W. et al. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61, 383–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, R. S. et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J. Clin. Invest. 112, 1550–1560 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Farooqi, I. S. et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab. 92, 3369–3373 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Dubern, B. et al. Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J. Pediatr. 139, 204–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Stutzmann, F. et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57, 2511–2518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farooqi, I. S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lubrano-Berthelier, C. et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab. 91, 1811–1818 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Holder, J. L., Jr, Butte, N. F. & Zinn, A. R. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 9, 101–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kublaoui, B. M., Holder, J. L. Jr, Tolson, K. P., Gemelli, T. & Zinn, A. R. SIM1 overexpression partially rescues agouti yellow and diet-induced obesity by normalizing food intake. Endocrinology 147, 4542–4549 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Holder, J. L. Jr. et al. Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice. Am. J. Physiol. Endocrinol. Metab. 287, E105–E113 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Michaud, J. L., Rosenquist, T., May, N. R. & Fan, C. M. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. 12, 3264–3275 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michaud, J. L. et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10, 1465–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Faivre, L. et al. Deletion of the SIM1 gene (6q16.2) in a patient with a Prader–Willi-like phenotype. J. Med. Genet. 39, 594–596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity 14, 529–644 (2006).

    Article  PubMed  Google Scholar 

  61. Saunders, C. L. et al. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 15, 2263–2275 (2007).

    Article  Google Scholar 

  62. Deng, H. W. et al. A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am. J. Hum. Genet. 70, 1138–1151 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, Y. J. et al. Tests of linkage and/or association of the LEPR gene polymorphisms with obesity phenotypes in Caucasian nuclear families. Physiol. Genomics 17, 101–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Stone, S. et al. A major predisposition locus for severe obesity, at 4p15-p14. Am. J. Hum. Genet. 70, 1459–1468 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gorlova, O. Y. et al. Genetic linkage and imprinting effects on body mass index in children and young adults. Eur. J. Hum. Genet. 11, 425–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Norris, J. M. et al. Quantitative trait loci for abdominal fat and BMI in Hispanic-Americans and African-Americans: the IRAS Family study. Int. J. Obes. (Lond.) 29, 67–77 (2005).

    Article  CAS  Google Scholar 

  67. Wilson, A. F., Elston, R. C., Tran, L. D. & Siervogel, R. M. Use of the robust sib-pair method to screen for single-locus, multiple-locus, and pleiotropic effects: application to traits related to hypertension. Am. J. Hum. Genet. 48, 862–872 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Moslehi, R., Goldstein, A. M., Beerman, M., Goldin, L. & Bergen, A. W. A genome-wide linkage scan for body mass index on Framingham Heart Study families. BMC Genet. 4, S97 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cai, G. et al. Quantitative trait locus determining dietary macronutrient intakes is located on human chromosome 2p22. Am. J. Clin. Nutr. 80, 1410–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Palmer, L. J. et al. A whole-genome scan for obstructive sleep apnea and obesity. Am. J. Hum. Genet. 72, 340–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Rotimi, C. N. et al. The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans. Diabetes 48, 643–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, Y. J. et al. A follow-up linkage study for quantitative trait loci contributing to obesity-related phenotypes. J. Clin. Endocrinol. Metab. 89, 875–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Fox, C. S. et al. Genome-wide linkage to chromosome 6 for waist circumference in the Framingham Heart Study. Diabetes 53, 1399–1402 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, X. et al. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am. J. Hum. Genet. 70, 1247–1256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luke, A. et al. Linkage for BMI at 3q27 region confirmed in an African-American population. Diabetes 52, 1284–1287 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Francke, S. et al. A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum. Mol. Genet. 10, 2751–2765 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Walder, K., Hanson, R. L., Kobes, S., Knowler, W. C. & Ravussin, E. An autosomal genomic scan for loci linked to plasma leptin concentration in Pima Indians. Int. J. Obes. Relat. Metab. Disord. 24, 559–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Kissebah, A. H. et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 97, 14478–14483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vionnet, N. et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 67, 1470–1480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Atwood, L. D. et al. Genomewide linkage analysis of body mass index across 28 years of the Framingham Heart Study. Am. J. Hum. Genet. 71, 1044–1050 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meyre, D. et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes 53, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Feitosa, M. F. et al. Quantitative-trait loci influencing body-mass index reside on chromosomes 7 and 13: the National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Hum. Genet. 70, 72–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Hsueh, W. C. et al. Genome-wide scan of obesity in the Old Order Amish. J. Clin. Endocrinol. Metab. 86, 1199–1205 (2001).

    CAS  PubMed  Google Scholar 

  84. Perusse, L. et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 50, 614–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Price, R. A. et al. A locus affecting obesity in human chromosome region 10p12. Diabetologia 44, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Hager, J. et al. A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat. Genet. 20, 304–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Hinney, A. et al. Independent confirmation of a major locus for obesity on chromosome 10. J. Clin. Endocrinol. Metab. 85, 2962–2965 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hanson, R. L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet. 63, 1130–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Norman, R. A. et al. Genomewide search for genes influencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22. Pima Diabetes Gene Group. Am. J. Hum. Genet. 60, 166–173 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Norman, R. A. et al. Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians. Am. J. Hum. Genet. 62, 659–668 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dong, C. et al. Interacting genetic loci on chromosomes 20 and 10 influence extreme human obesity. Am. J. Hum. Genet. 72, 115–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Hunt, S. C. et al. Linkage of body mass index to chromosome 20 in Utah pedigrees. Hum. Genet. 109, 279–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, J. H. et al. Genome scan for human obesity and linkage to markers in 20q13. Am. J. Hum. Genet. 64, 196–209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Young, E. H. et al. The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29563 individuals. Int. J. Obes (Lond.) 31, 1437–1441 (2007).

    Article  CAS  Google Scholar 

  95. Stutzmann, F. et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum. Mol. Genet. 16, 1837–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Heid, I. M. et al. Association of the 103I MC4R allele with decreased body mass in 7937 participants of two population based surveys. J. Med. Genet. 42, e21 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loos, R. J. et al. Melanocortin-4 receptor gene and physical activity in the Quebec Family Study. Int. J. Obes. (Lond.) 29, 420–428 (2005).

    Article  CAS  Google Scholar 

  98. Geller, F. et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am. J. Hum. Genet. 74, 572–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ma, L., Tataranni, P. A., Bogardus, C. & Baier, L. J. Melanocortin 4 receptor gene variation is associated with severe obesity in Pima Indians. Diabetes 53, 2696–2699 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Hinney, A. et al. Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J. Clin. Endocrinol. Metab. 88, 4258–4267 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Chagnon, Y. C. et al. Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Quebec Family Study. Mol. Med. 3, 663–673 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. El-Gharbawy, A. H. et al. Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents. J. Clin. Endocrinol. Metab. 91, 3548–3552 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ribases, M. et al. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur. J. Hum. Genet. 13, 428–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Gray, J. et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55, 3366–3371 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Shugart, Y. Y. et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur. J. Hum. Genet. 17, 1050–1055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat. Genet. 40, 943–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Fujisawa, T., Ikegami, H., Kawaguchi, Y. & Ogihara, T. Meta-analysis of the association of Trp64Arg polymorphism of β3-adrenergic receptor gene with body mass index. J. Clin. Endocrinol. Metab. 83, 2441–2444 (1998).

    CAS  PubMed  Google Scholar 

  108. Kurokawa, N. et al. The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44 833 individuals. Int. J. Obes. (Lond.) 32, 1240–9 (2008).

    Article  CAS  Google Scholar 

  109. Allison, D. B., Heo, M., Faith, M. S. & Pietrobelli, A. Meta-analysis of the association of the Trp64Arg polymorphism in the β3-adrenergic receptor with body mass index. Int. J. Obes. Relat. Metab. Disord. 22, 559–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Clement, K. et al. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 333, 352–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Kurokawa, N., Nakai, K., Kameo, S., Liu, Z. M. & Satoh, H. Association of BMI with the β3-adrenergic receptor gene polymorphism in Japanese: meta-analysis. Obes. Res. 9, 741–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Deeb, S. S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20, 284–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Tonjes, A., Scholz, M., Loeffler, M. & Stumvoll, M. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor γ with Pre-diabetic phenotypes: meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care 29, 2489–2497 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, C. R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 339, 953–959 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Loos, R. J. Recent progress in the genetics of common obesity. Br. J. Clin. Pharmacol. 68, 811–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat. Genet. 44, 526–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan, J. T. et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 57, 2851–2857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dorajoo, R. et al. Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. Int. J. Obes (Lond.) 36, 159–163 (2012).

    Article  CAS  Google Scholar 

  123. Paternoster, L. et al. Genome-wide population-based association study of extremely overweight young adults--the GOYA study. PLoS ONE 6, e24303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, H., Dong, S., Xu, H., Qian, J. & Yang, J. Genetic variants in FTO associated with metabolic syndrome: a meta- and gene-based analysis. Mol. Biol. Rep. 39, 5691–5698 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Heard-Costa, N. L. et al. NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium. PLoS Genet. 5, e1000539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hinney, A. et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2, e1361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, J. Z. et al. Genome-wide association study of height and body mass index in Australian twin families. Twin Res. Hum. Genet. 13, 179–193 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Scherag, A. et al. Two new loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and German study groups. PLoS Genet. 6, e1000916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meyre, D. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 41, 157–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Cotsapas, C. et al. Common body mass index-associated variants confer risk of extreme obesity. Hum. Mol. Genet. 18, 3502–3507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Melka, M. G. et al. FTO, obesity and the adolescent brain. Hum. Mol. Genet. (2012).

  137. Ho, A. J. et al. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc. Natl Acad. Sci. USA 107, 8404–8409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chambers, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet. 40, 716–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, K. et al. A genome-wide association study on obesity and obesity-related traits. PLoS ONE 6, e18939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Day, F. R. & Loos, R. J. Developments in obesity genetics in the era of genome-wide association studies. J. Nutrigenet. Nutrigenomics 4, 222–238 (2011).

    Article  PubMed  Google Scholar 

  141. Fall, T. & Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. (2012).

  142. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. de Smith, A. J. et al. Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum. Mol. Genet. 16, 2783–2794 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Sha, B. Y. et al. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. J. Hum. Genet. 54, 199–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jarick, I. et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum. Mol. Genet. 20, 840–852 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Walters, R. G. et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463, 671–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bochukova, E. G. et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463, 666–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, K. et al. Large copy-number variations are enriched in cases with moderate to extreme obesity. Diabetes 59, 2690–2694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yu, Y. et al. Age- and gender-dependent obesity in individuals with 16p11.2 deletion. J. Genet. Genomics 38, 403–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat. Genet. 41, 1223–1227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478, 97–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ren, D. et al. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J. Clin. Invest. 117, 397–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Doche, M. E. et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J. Clin. Invest. 122, 4732–4736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Glessner, J. T. et al. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am. J. Hum. Genet. 87, 661–666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. El-Sayed Moustafa, J. S. et al. Novel association approach for variable number tandem repeats (VNTRs) identifies DOCK5 as a susceptibility gene for severe obesity. Hum. Mol. Genet. 21, 3727–3738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Loos, R. J. Genetic determinants of common obesity and their value in prediction. Best Pract. Res. Clin. Endocrinol. Metab. 26, 211–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Morandi, A. et al. Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts. PLoS ONE 7, e49919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cassidy, S. B., Dykens, E. & Williams, C. A. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am. J. Med. Genet. 97, 136–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Livshits, G., Malkin, I., Moayyeri, A., Spector, T. D. & Hammond, C. J. Association of FTO gene variants with body composition in UK twins. Ann. Hum. Genet. 76, 333–341 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sarzynski, M. A. et al. Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases. Int. J. Obes. (Lond.) 35, 676–683 (2011).

    Article  CAS  Google Scholar 

  165. Still, C. D. et al. High allelic burden of four obesity SNPs is associated with poorer weight loss outcomes following gastric bypass surgery. Obesity (Silver Spring) 19, 1676–1683 (2011).

    Article  CAS  Google Scholar 

  166. Aslan, I. R. et al. Bariatric surgery in a patient with complete MC4R deficiency. Int. J. Obes. (Lond.) 35, 457–461 (2010).

    Article  Google Scholar 

  167. Aslan, I. R. et al. Weight loss after Roux-en-Y gastric bypass in obese patients heterozygous for MC4R mutations. Obes. Surg. 21, 930–934 (2011).

    Article  PubMed  Google Scholar 

  168. Hatoum, I. J. et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J. Clin. Endocrinol. Metab. 97, E1023–E1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Valette, M. et al. Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLoS ONE 7, e48221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bonnefond, A. et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS ONE 5, e13630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bonnefond, A. et al. Whole-Exome Sequencing and High Throughput Genotyping Identified KCNJ11 as the Thirteenth MODY Gene. PLoS ONE 7, e37423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42, 483–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Saeed and H. Al-Saud (Department of Genomics of Common Disease, Imperial College London, London, United Kingdom W12 0NN) for helpful suggestions and a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J. S. El-Sayed Moustafa and P. Froguel contributed equally to researching the data for the article, discussion of content, and to writing and editing of the manuscript.

Corresponding author

Correspondence to Philippe Froguel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed Moustafa, J., Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat Rev Endocrinol 9, 402–413 (2013). https://doi.org/10.1038/nrendo.2013.57

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrendo.2013.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing