Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Opening Darwin's black box: teaching evolution through developmental genetics

Abstract

When biologists are asked to discuss the evidence for evolution at public forums, they usually use well-established microevolutionary examples. Although these examples show the efficacy of evolution within species, they often leave audiences susceptable to the arguments of creationists who deny that evolution can create new structures and species. Recent studies from evolutionary developmental biology are beginning to provide case studies that specifically address these concerns. This perspective presents some of this new evidence and provides a framework in which to explain homology and phylogeny to such audiences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: York Minster and two rival cladograms of western religion.
Figure 2: Regulation of chicken limb apoptosis by BMPs.
Figure 3: Inhibition of cell death by inhibiting BMP.
Figure 4: A newly emerging evolutionary synthesis.

Similar content being viewed by others

References

  1. Grant, P. R. Ecology and Evolution of Darwin's Finches (Princeton Univ. Press, Princeton, New Jersey, 1986).

    Google Scholar 

  2. McKenzie, J. A. & Batterham, P. Predicting insecticide resistance: mutagenesis, selection and response. Philos. Trans. R. Soc. Lond. B 353, 1729–1734 (1998).

    Article  CAS  Google Scholar 

  3. Raymond, M., Chevillon, C., Guillemaud, T., Lenormand, T. & Pasteur, N. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. Lond. B 353, 1707–1711 (1998).

    Article  CAS  Google Scholar 

  4. Normark, B. H., & Normark, S. Evolution and spread of antibiotic resistance. J. Intern. Med. 252, 91–106 (2002).

    Article  CAS  Google Scholar 

  5. Pigliucci, M. Phenotypic Plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, Baltimore, 2001).

    Google Scholar 

  6. Behe, M. J. Darwin's Black Box: the Biochemical Challenge to Evolution (Free Press, New York, 1996).

    Google Scholar 

  7. Kettlewell, H. B. D. Darwin's missing evidence. Sci. Amer. 200, 48–53 (1959).

    Article  CAS  Google Scholar 

  8. Hall, B. K. Waddington's legacy in development and evolution. Am. Zool. 32, 113–122 (1992).

    Article  Google Scholar 

  9. Gilbert, S. F. Diachronic biology meets evo–devo: C. H. Waddington's approach to evolutionary developmental biology. Am. Zool. 40, 729–737 (2002).

    Google Scholar 

  10. Slack, J. M. Conrad Hal Waddington: the last Renaissance biologist? Nature Rev. Genet. 3, 889–895 (2002).

    Article  CAS  Google Scholar 

  11. Waddington, C. H. Canalization of development and the inheritance of acquired characteristics. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  12. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  Google Scholar 

  13. Hughes, C. G. & Kaufman, T. Hox genes and the evolution of the arthropod body plan. Evo. Dev. 4, 459–499 (2002).

    Article  CAS  Google Scholar 

  14. Darwin, C. On the Origin of Species (John Murray, London, 1859).

    Google Scholar 

  15. Darwin, C. The Descent of Man and Selection in Relation to Sex 2 Vols, 2nd edn (John Murray, London, 1874).

    Book  Google Scholar 

  16. Bowler, P. Life's Splendid Drama (Univ. of Chicago Press, Chicago, 1996).

    Google Scholar 

  17. Gilbert, S. F. Bearing crosses: a historiography of genetics and embryology. Am. J. Med. Genet. 76, 168–182 (1998).

    Article  CAS  Google Scholar 

  18. Bateson, W. Evolutionary faith and modern doubts. Science 40, 1412–1415 (1922).

    Google Scholar 

  19. Desmond, A. & Moore. J. Darwin: the Life of a Tormented Evolutionist (Norton, New York, 1991).

    Google Scholar 

  20. Boore, J. L., Lavrov, D. V. & Brown, W. M. Gene translocation links insects and crustaceans. Nature 392, 667–668 (1998).

    Article  CAS  Google Scholar 

  21. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    Article  CAS  Google Scholar 

  22. De Rosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999).

    Article  CAS  Google Scholar 

  23. Shimamura, M. et al. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666–670 (1997).

    Article  CAS  Google Scholar 

  24. Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, Cambridge, Massachusetts, 1977).

    Google Scholar 

  25. Maxam, A. & Gilbert, W. A new method for sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564 (1977).

    Article  CAS  Google Scholar 

  26. Gehring, W. J. The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev. Biol. 46, 65–73 (2002).

    Google Scholar 

  27. Halder, G., Callaerts, P., & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995)

    Article  CAS  Google Scholar 

  28. Pineda, D. et al. Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc. Natl Acad. Sci. USA 97, 4525–4529 (2000).

    Article  CAS  Google Scholar 

  29. Wawersik, S. & Maas, R. L. Vertebrate eye development as modeled in Drosophila. Hum. Mol. Genet. 9, 917–925 (2000).

    Article  CAS  Google Scholar 

  30. Salvini-Plawin, L. V. & Mayr, E. Evolution of photoreceptors and eyes. Evol. Biol. 10, 207–263 (1977).

    Google Scholar 

  31. Erwin, D. H. The origin of bodyplans. Am. Zool. 39, 617–629 (1999).

    Article  Google Scholar 

  32. Pichaud, F. & Desplan, C. Pax genes and eye organogenesis. Curr. Opin. Genet. Dev. 12, 430–434 (2002).

    Article  CAS  Google Scholar 

  33. Gilbert, S. F. Developmental Biology 7th edn (Sinauer Associates, Sunderland, Massachusetts, 2003).

    Google Scholar 

  34. Aitkenhead, M. et al. Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail. Dev. Dyn. 212, 1–13 (1998).

    Article  CAS  Google Scholar 

  35. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  Google Scholar 

  36. Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. The evolutionary origin of complex features. Nature 423, 139–144 (2003).

    Article  CAS  Google Scholar 

  37. Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910–913 (2002).

    Article  CAS  Google Scholar 

  38. Ronshaugen, M., McGinnis, N. & McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature 415, 914–917 (2002).

    Article  Google Scholar 

  39. Carroll, S. B., Weatherbee, S. D. & Langeland, J. A. Homeotic genes and the regulation and evolution of insect wing number. Nature 375, 58–61 (1995).

    Article  CAS  Google Scholar 

  40. Weatherbee, S. D. et al. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr. Biol. 9, 109–115 (1999).

    Article  CAS  Google Scholar 

  41. Merino, R. et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126, 5515–5522 (1999).

    CAS  PubMed  Google Scholar 

  42. Gaunt, S. J. Conservation in the Hox code during morphological evolution. Int. J. Dev. Biol. 38, 549–552 (1994).

    CAS  PubMed  Google Scholar 

  43. Burke, A. C., Nelson, A. C., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    CAS  PubMed  Google Scholar 

  44. Averof, M. & Patel, N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686 (1997).

    Article  CAS  Google Scholar 

  45. Harris, M. P., Fallon, J. F. & Prum, R. O. Shh–BMP2 signaling module and the evolutionary origin and diversification of feathers. J. Exp. Zool. Part B Mol. Dev. Evol. 294, 160–176 (2002).

    Article  CAS  Google Scholar 

  46. Yu, M., Wu, P., Widelitz, R. B. & Chuong. C. M. The morphogenesis of feathers. Nature 420, 308–312 (2002).

    Article  CAS  Google Scholar 

  47. Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).

    Article  CAS  Google Scholar 

  48. Ferkowicz, M. J. & Raff, R. A. Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol. Dev. 3, 24–33 (2001).

    Article  CAS  Google Scholar 

  49. Kuratani, S., Nobusada, Y., Horigome, N. & Shigetani, Y. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos. Trans. R. Soc. Lond. B 356, 1615–1632 (2001).

    Article  CAS  Google Scholar 

  50. Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).

    Article  Google Scholar 

  51. Waddington, C. H. in Evolution (Soc. Exp. Biol. Symp. VII) (eds Brown, R. & Danielli, J. F.) 186–199 (Cambridge Univ. Press. Cambridge, UK, 1953).

    Google Scholar 

  52. Schmalhausen, I. I. Factors of Evolution: the Theory of Stabilizing Selection (Univ. of Chicago Press, Chicago, 1949).

    Google Scholar 

  53. Shapiro, A. M. Seasonal polyphenism. Evol. Biol. 9, 259–333 (1976).

    Google Scholar 

  54. Brakefield, P. M. et al. Development, plasticity, and evolution of butterfly eyespot patterns. Nature 384, 236–242 (1996).

    Article  CAS  Google Scholar 

  55. West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).

    Article  Google Scholar 

  56. West–Eberhard, M. J. Developmental Plasticity and Evolution. Oxford University Press (2003).

    Google Scholar 

  57. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    Article  CAS  Google Scholar 

  58. Pigliucci, M. Denying Evolution: Creationism, Scientism, and the Nature of Science (Sinauer Associates, Sunderland, Massachusetts, 2002).

    Google Scholar 

  59. Haldane, J. B. S. Foreword. in Evolution (Soc. Exp. Biol. Symp. VII) (eds Brown, R. & Danielli, J. F.) ix–xix (Cambridge Univ. Press, Cambridge, UK, 1953).

    Google Scholar 

Download references

Acknowledgements

This Perspective is based on a talk originally presented as a lecture to the Society for Developmental Biology (SDB) at its annual meeting in 2002. I wish to thank the Education Committee of the SDB for the opportunity to write it and to Kenneth Miller and Sean Carroll for their helpful comments. Funding was from the National Science Foundation and from Swarthmore College, Pennsylvania.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

FlyBase

Distal-less

Ubx

LocusLink

Pax6

Swiss-Prot

BMP2

BMP4

Gremlin

Sonic hedgehog

FURTHER INFORMATION

Evolution, development, and creationism — a supplement

Glossary

BAYESIAN

A branch of statistics that focuses on the posterior probability of hypotheses. The posterior probability is proportional to the product of the prior probability and the likelihood.

DIPTERANS

Insects with two wings, such as flies and mosquitos.

ECLOSION

The emergence of the adult insect from its pupal case.

HALTERE

Balancers. Club-like tissue arising from the imaginal disc in the third segment of dipterans.

HOMOPLASY

Similarity whereby structures have similar form or function but not the same ancestral origin. Homoplasies often result from convergent evolution whereby different organisms in the same environment produce similar adaptions.

HYPOPHYSEAL

Pituitary.

IMAGINAL DISCS

Thickenings of the epidermis in larval insects. These structures produce the adult wings, legs, eyes, antennae, mouth and genitalia during metamorphosis.

INSTAR

The period between larval insect molts.

LIKELIHOOD ESTIMATION TEST

A statistical method that calculates the probability of the observed data under varying hypotheses to estimate model parameters that best explain the observed data and determine the relative strengths of alternative hypotheses.

MODERN SYNTHESIS

Neo-Darwinism. The theory that natural selection, acting on randomly generated variation, is the major cause of evolution.

NEURAL CREST CELLS

A migratory cell population that arises at the lateral edges of the neural plate, and which differentiates into numerous cell types including skull and facial bone, pigment cells, adrenal medullary cell, and the neurons and glia of the sensory and autonomic nervous systems.

NOTOCHORD

A rod of mesodermal cells in the dorsal midline beneath the neural tube. It is the major characteristic of chordates.

POLYPHENISM

Phenotypic variation not attributable to genetic differences: the product of environmental stimuli on particular genotypes. One example is seasonal polyphenism, whereby individuals with the same genotype manifest different phenotypes owing to temperature.

REACTION NORMS

A situation in a population in which the genotype provides a graded response to environmental conditions.

RENAL GLOMERULI

A cluster of capillaries in the kidney cortex.

SOMITES

Blocks of mesoderm along the vertebrate body axis that further differentiate into dermal skin, bone and muscle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S. Opening Darwin's black box: teaching evolution through developmental genetics. Nat Rev Genet 4, 735–741 (2003). https://doi.org/10.1038/nrg1159

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing