Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA vaccines: ready for prime time?

Key Points

  • Since the initial discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and can elicit an immune response, there has been a great deal of progress in understanding the basic biology of this platform.

  • Data from preclinical studies using DNA vaccine technology has generated a large amount of excitement, because protective immunity was induced by platforms against a broad range of virus families.

  • The initial development of DNA vaccines in larger animals and human studies showed that DNA is well tolerated and has an excellent safety record.

  • Clinical studies of first-generation vaccines, primarily consisting of naked DNA, showed that this platform induces only low levels of immunity. The status of these vaccines as a stand-alone platform was thus jeopardized, demonstrating the need for improvements in delivery technology and continued optimization of 'prime-boost' strategies.

  • Recent studies have generated new leads from basic research on insert design, RNA structure, variation in codon usage, and leader-sequence optimizations — all of which improve the immune potency of DNA vaccines.

  • New formulations, including lipids and polymers, and new delivery devices, including the gene gun, skin-delivery devices and, most recently, electroporation technology, seem to be promising in preclinical models and will be followed closely in the clinic.

  • Strong molecular adjuvants that are included in plasmid formulations seem to be important and are particularly well suited for further improving immune potency of DNA vaccines and for controlling the phenotype of the induced immune response.

  • In the past 3 years, four DNA vaccine or immune therapy products have been licensed in the veterinary arena for diverse species, including salmon, pigs, dogs and horses. These products are the first validation of the commercial viability of the DNA vaccine platform and illustrate strong progress in this area.

  • Progress in the DNA platform will continue to be an exciting and highly productive adventure, illustrating the best in academic and translational science and cooperation between industry, the regulatory authorities, funding agencies and academicians.

Abstract

Since the discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and elicit an immune response, there has been much progress in understanding the basic biology of this platform. A large amount of data has been generated in preclinical model systems, and more sustained cellular responses and more consistent antibody responses are being observed in the clinic. Four DNA vaccine products have recently been approved, all in the area of veterinary medicine. These results suggest a productive future for this technology as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA vaccines: optimization strategies to enhance immunogenicity.

Similar content being viewed by others

References

  1. Tang, D. C., DeVit, M. & Johnston, S. A. Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152–154 (1992). This is the first paper to report that introducing a protein-coding gene directly into the skin of mice (by propelling DNA-coated gold microprojectiles into cells of a living animal) could elicit antibody responses against the delivered antigen.

    Article  CAS  PubMed  Google Scholar 

  2. Ulmer, J. B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993). This report, and references 3 and 4, were the original articles that described the ability to deliver by plasmid a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors.

    Article  CAS  PubMed  Google Scholar 

  3. Fynan, E. F. et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl Acad. Sci. USA 90, 11478–11482 (1993). The authors report that different sites of plasmid delivery supported plasmid-driven immune responses to DNA-encoding influenza virus antigen; a gene gun was used to deliver low levels of plasmid immunogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, B. et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 90, 4156–4160 (1993). This is the first report of a DNA vaccine approach for HIV-1. It shows that the gene inoculation technique mimics features of vaccination with live attenuated viruses, including induction of CTL and T helper cell responses, and type-specific antibody responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruprecht, R. M. Live attenuated AIDS viruses as vaccines: promise or peril? Immunol. Rev. 170, 135–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Offit, P. A. The Cutter incident, 50 years later. N. Engl. J. Med. 352, 1411–1412 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ramakrishna, L., Anand, K. K., Mohankumar, K. M. & Ranga, U. Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J. Virol. 78, 9174–9189 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frelin, L. et al. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther. 11, 522–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Gao, F. et al. Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res. Hum. Retroviruses 19, 817–823 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, J. et al. Enhanced cellular immune responses elicited by an engineered HIV-1 subtype B consensus-based envelope DNA vaccine. Mol. Ther. 15, 411–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cheung, Y. K., Cheng, S. C., Sin, F. W. & Xie, Y. Plasmid encoding papillomavirus Type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine 23, 629–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Narum, D. L. et al. Codon optimization of gene fragments encoding Plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice. Infect. Immun. 69, 7250–7253 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yadava, A. & Ockenhouse, C. F. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect. Immun. 71, 4961–4969 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, J. M. et al. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res. Hum. Retroviruses 20, 1335–1347 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Laddy, D. J. et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE 3, e2517 (2008). The authors report that by combining RNA and codon optimization, novel leader sequence design, formulation, and synthetic consensus influenza antigens, with electroporation delivery, both protective cellular and humoral immune responses can be achieved in mice, ferrets and non-human primates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laddy, D. J. et al. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine 25, 2984–2989 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwissa, M. et al. Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control. Vaccine 18, 2337–2344 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, R. et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480 (1998). The authors report that healthy, malaria-naive volunteers vaccinated with plasmid DNA encoding a malaria protein develop antigen-specific, genetically restricted, CD8+ T cell-dependent CTLs. However, the high (almost 50%) response rates reported here have been difficult to replicate.

    Article  CAS  PubMed  Google Scholar 

  19. McConkey, S. J. et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nature Med. 9, 729–735 (2003). This article reports on a heterologous prime-boost regime involving the vaccination of malaria antigenic DNA followed by intradermal delivery of recombinant modified vaccinia virus Ankara. Such heterologous prime-boost immunization approaches have since come into favour.

    Article  CAS  PubMed  Google Scholar 

  20. MacGregor, R. R. et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis. 178, 92–100 (1998). This paper describes the first human trial of a DNA-based vaccine for HIV-1 infection; immune responses were weaker than expected based on preclinical data. Similar findings for other DNA vaccine clinical studies would be reported, stimulating concerns about the technology's immune potency.

    Article  CAS  PubMed  Google Scholar 

  21. Mincheff, M. et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a Phase I/II clinical trial. Eur. Urol. 38, 208–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tacket, C. O. et al. Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17, 2826–2829 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Le, T. P. et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18, 1893–1901 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, M. A. & Ulmer, J. B. Human clinical trials of plasmid DNA vaccines. Adv. Genet. 55, 25–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ulmer, J. B., Wahren, B. & Liu, M. A. Gene-based vaccines: recent technical and clinical advances. Trends Mol. Med. 12, 216–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Peters, B. S. et al. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine 25, 2120–2127 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Dorrell, L. et al. Safety and tolerability of recombinant modified vaccinia virus Ankara expressing an HIV-1 gag/multiepitope immunogen (MVA.HIVA) in HIV-1-infected persons receiving combination antiretroviral therapy. Vaccine 25, 3277–3283 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kresge, K. J. A STEP back? Additional data released from the STEP trial raises questions about whether the vaccine may have increased the risk of HIV infection. IAVI Report [online]

  29. Catanzaro, A. T. et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis. 194, 1638–1649 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Graham, B. S. et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J. Infect. Dis. 194, 1650–1660 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Daud Adil, I. et al. First-in-man trial of in vivo electroporation mediated gene transfer: safety and efficacy of IL-12 plasmid dose escalation in metastatic melanoma. J. Clin. Oncol. (in the press).

  32. Buchan, S. et al. Electroporation as a 'prime/boost' strategy for naked DNA vaccination against a tumor antigen. J. Immunol. 174, 6292–6298 (2005). Elegantly designed vectors are used in a novel homologous prime-boost approach that combines DNA fusion vaccines with electroporation. Superior anti-tumour immune responses are generated, supporting the idea that boosting might not require viral vectors, but simply changing method of delivery.

    Article  CAS  PubMed  Google Scholar 

  33. Rice, J., Ottensmeier, C. H. & Stevenson, F. K. DNA vaccines: precision tools for activating effective immunity against cancer. Nature Rev. Cancer 8, 108–120 (2008).

    Article  CAS  Google Scholar 

  34. Davidson, A. H. et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc. 226, 240–245 (2005).

    Article  PubMed  Google Scholar 

  35. Garver, K. A., LaPatra, S. E. & Kurath, G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ. 64, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bergman, P. J. et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24, 4582–4585 (2006). This clinical study shows that xenogeneic DNA vaccination with tyrosinase family members can produce immune responses that result in tumour rejection or protection and prolongation of survival. These findings have led to a licensed veterinary product.

    Article  CAS  PubMed  Google Scholar 

  37. Thacker, E. L. et al. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection. J. Anim. Sci. 84, 733–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kurth, R. Risk potential of the chromosomal insertion of foreign DNA. Ann. N. Y Acad. Sci. 772, 140–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Manam, S. et al. Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43, 273–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Ledwith, B. J. et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43, 258–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Temin, H. M. Overview of biological effects of addition of DNA molecules to cells. J. Med. Virol. 31, 13–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Pal, R. et al. Definitive toxicology and biodistribution study of a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 (HIV-1) vaccine in rabbits. Vaccine 24, 1225–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Sheets, R. L. et al. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol. Sci. 91, 610–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ledwith, B. J. et al. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev. Biol. (Basel) 104, 33–43 (2000).

    CAS  Google Scholar 

  45. Klinman, D. M. et al. DNA vaccines: capacity to induce auto-immunity and tolerance. Dev. Biol. (Basel) 104, 45–51 (2000).

    CAS  Google Scholar 

  46. MacGregor, R. R. et al. Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type I env/rev vaccine in HIV-infected recipients: follow-up data. J. Infect. Dis. 181, 406 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Bagarazzi, M. L. et al. Safety and immunogenicity of intramuscular and intravaginal delivery of HIV-1 DNA constructs to infant chimpanzees. J. Med. Primatol. 26, 27–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Mairhofer, J., Pfaffenzeller, I., Merz, D. & Grabherr, R. A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol. J. 3, 83–89 (2007).

    Article  CAS  Google Scholar 

  49. Cranenburgh, R. M., Hanak, J. A., Williams, S. G. & Sherratt, D. J. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 29, E26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garmory, H. S. et al. Antibiotic-free plasmid stabilization by operator-repressor titration for vaccine delivery by using live Salmonella enterica Serovar typhimurium. Infect. Immun. 73, 2005–2011 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robertson, J. S. & Cichutek, K. European Union guidance on the quality, safety and efficacy of DNA vaccines and regulatory requirements. Dev. Biol. (Basel) 104, 53–56 (2000).

    CAS  Google Scholar 

  52. Nichols, W. W., Ledwith, B. J., Manam, S. V. & Troilo, P. J. Potential DNA vaccine integration into host cell genome. Ann. N. Y Acad. Sci. 772, 30–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Robertson, J. S. & Griffiths, E. Assuring the quality, safety, and efficacy of DNA vaccines. Methods Mol. Med. 127, 363–374 (2006).

    CAS  PubMed  Google Scholar 

  54. Medjitna, T. D. et al. DNA vaccines: safety aspect assessment and regulation. Dev. Biol. (Basel) 126, 261–270; discussion 126, 327 (2006).

    CAS  Google Scholar 

  55. Minor, P. D. Regulatory issues in the use of DNA vaccines. Ann. N. Y Acad. Sci. 772, 170–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. US Department of Health and Human Services. Guidance for Industry: Considerations for Plasmid DNA Vaccines for Infectious Disease Indications. Food and Drug Administration [online], (2007).

  57. Gorman, C. M. et al. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl Acad. Sci. USA 79, 6777–6781 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moreau, P. et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9, 6047–6068 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boshart, M. et al. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Donnelly, J. J., Ulmer, J. B., Shiver, J. W. & Liu, M. A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Bojak, A., Hammer, D., Wolf, H. & Wagner, R. Muscle specific versus ubiquitous expression of Gag based HIV-1 DNA vaccines: a comparative analysis. Vaccine 20, 1975–1979 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Cazeaux, N. et al. Comparative study of immune responses induced after immunization with plasmids encoding the HIV-1 Nef protein under the control of the CMV-IE or the muscle-specific desmin promoter. Vaccine 20, 3322–3331 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Montgomery, D. L. et al. Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol. 12, 777–783 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Hartikka, J. et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 7, 1205–1217 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Barouch, D. H. et al. A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J. Virol. 79, 8828–8834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito, H. et al. Promoter sequences of varicella-zoster virus glycoprotein I targeted by cellular transactivating factors Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo. J. Virol. 77, 489–498 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garg, S., Oran, A. E., Hon, H. & Jacob, J. The hybrid cytomegalovirus enhancer/chicken beta-actin promoter along with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protective efficacy of DNA vaccines. J. Immunol. 173, 550–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Li, H. S. et al. Enhancement of DNA vaccine-induced immune responses by a 72-bp element from SV40 enhancer. Chin. Med. J. (Engl.) 120, 496–502 (2007).

    Article  CAS  Google Scholar 

  69. Kozak, M. Recognition of AUG and alternative initiator codons is augmented by G. in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 16, 2482–2492 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, W. et al. Multiple RNA splicing and the presence of cryptic RNA splice donor and acceptor sites may contribute to low expression levels and poor immunogenicity of potential DNA vaccines containing the env gene of equine infectious anemia virus (EIAV). Vet. Microbiol. 88, 127–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, X., Jornvall, H., Berndt, K. D. & Oppermann, U. Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem. Biophys. Res. Commun. 313, 89–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, W. et al. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem. Biophys. Res. Commun. 349, 69–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Li, Y., Luo, L., Thomas, D. Y. & Kang, C. Y. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology 272, 417–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, Z. L. et al. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272, 149–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Malin, A. S. et al. Vaccinia expression of Mycobacterium tuberculosis-secreted proteins: tissue plasminogen activator signal sequence enhances expression and immunogenicity of M. tuberculosis Ag85. Microbes Infect. 2, 1677–1685 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kutzler, M. A. et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J. Immunol. 175, 112–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, J. S. et al. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg. Infect. Dis. 8, 1379–1384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumar, S. et al. Immunogenicity testing of a novel engineered HIV-1 envelope gp140 DNA vaccine construct. DNA Cell Biol. 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, S. et al. Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine 24, 4531–4540 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Hu, S. L. & Stamatatos, L. Prospects of HIV Env modification as an approach to HIV vaccine design. Curr. HIV Res. 5, 507–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Luria-Perez, R. et al. A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 25, 5071–5085 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hanke, T. et al. Development of a DNA-MVA/HIVA vaccine for Kenya. Vaccine 20, 1995–1998 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Ellenberger, D. L. et al. Generation of a consensus sequence from prevalent and incident HIV-1 infections in West Africa to guide AIDS vaccine development. Virology 302, 155–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Malm, M. et al. Cross-clade protection induced by human immunodeficiency virus-1 DNA immunogens expressing consensus sequences of multiple genes and epitopes from subtypes A, B, C, and FGH. Viral Immunol. 18, 678–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Kothe, D. L. et al. Antigenicity and immunogenicity of HIV-1 consensus subtype B envelope glycoproteins. Virology 360, 218–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Kothe, D. L. et al. Ancestral and consensus envelope immunogens for HIV-1 subtype C. Virology 352, 438–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. De Groot, A. S. et al. HIV vaccine development by computer assisted design: the GAIA vaccine. Vaccine 23, 2136–2148 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Bublil, E. M., Yeger-Azuz, S. & Gershoni, J. M. Computational prediction of the cross-reactive neutralizing epitope corresponding to the [corrected] monclonal [corrected] antibody b12 specific for HIV-1 gp120. FASEB J. 20, 1762–1774 (2006).

    Article  PubMed  Google Scholar 

  90. Gnanasekar, M. et al. Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect. Immun. 72, 4707–4715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fikes, J. D. & Sette, A. Design of multi-epitope, analogue-based cancer vaccines. Expert Opin. Biol. Ther. 3, 985–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. McKinney, D. M. et al. Recognition of variant HIV-1 epitopes from diverse viral subtypes by vaccine-induced CTL. J. Immunol. 173, 1941–1950 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Livingston, B. et al. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol. 168, 5499–5506 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Stevenson, F. K. et al. DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol. Rev. 199, 156–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. O'Hagan, D. T., Singh, M. & Ulmer, J. B. Microparticle-based technologies for vaccines. Methods 40, 10–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Herrmann, J. E. et al. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 259, 148–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Kaur, R., Rauthan, M. & Vrati, S. Immunogenicity in mice of a cationic microparticle-adsorbed plasmid DNA encoding Japanese encephalitis virus envelope protein. Vaccine 22, 2776–2782 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Otten, G. R. et al. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J. Virol. 79, 8189–8200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, F. et al. Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine 24, 2017–2026 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Pai Kasturi, S. et al. Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J. Control. Release 113, 261–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Minigo, G. et al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25, 1316–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Jilek, S., Merkle, H. P. & Walter, E. DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv. Drug Deliv. Rev. 57, 377–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bhavsar, M. D. & Amiji, M. M. Polymeric nano- and microparticle technologies for oral gene delivery. Expert Opin. Drug Deliv. 4, 197–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Densmore, C. L. Polyethyleneimine-based gene therapy by inhalation. Expert Opin. Biol. Ther. 3, 1083–1092 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Garzon, M. R. et al. Induction of gp120-specific protective immune responses by genetic vaccination with linear polyethylenimine-plasmid complex. Vaccine 23, 1384–1392 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Bos, G. W. et al. Cationic polymers that enhance the performance of HbsAg DNA in vivo. Vaccine 23, 460–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Anderson, D. G. et al. A polymer library approach to suicide gene therapy for cancer. Proc. Natl Acad. Sci. USA 101, 16028–16033 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anwer, K. et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm. Res. 16, 889–895 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Jimenez, G. S. et al. Vaxfectin-formulated influenza DNA vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge. Hum. Vaccin 3, 157–164 (2007). Many reported DNA formulations have had limited success in improving immune responses of DNA vaccines in humans. The recent data generated with the Vaxfectin adjuvant in the influenza system show increased response rates and are therefore encouraging.

    Article  CAS  PubMed  Google Scholar 

  111. Nakanishi, M. & Noguchi, A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Adv. Drug Deliv. Rev. 52, 197–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Gao, X. & Huang, L. Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722 (1995).

    CAS  PubMed  Google Scholar 

  113. Mastrobattista, E. et al. Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Ther. 8, 405–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Perrie, Y. & Gregoriadis, G. Liposome-entrapped plasmid DNA: characterisation studies. Biochim. Biophys. Acta 1475, 125–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Yamano, T. et al. Enhancement of immunity by a DNA melanoma vaccine against TRP2 with CCL21 as an adjuvant. Mol. Ther. 13, 194–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, W. Z. et al. Protective immunization against melanoma by gp100 DNA-HVJ-liposome vaccine. Gene Ther. 6, 1768–1773 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Nabel, G. J. et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sci. USA 90, 11307–11311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, D. et al. Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses. J. Clin. Virol. 31 (Suppl 1), S99–S106 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, J. et al. Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex. Exp. Dermatol. 16, 724–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Barouch, D. H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492 (2000). This report is an important example of inclusion of a plasmid encoding a molecular adjuvant in a vaccine against the simian human immunodeficiency virus in rhesus monkeys. Its administration resulted in the augmentation of antigen-specific immune responses.

    Article  CAS  PubMed  Google Scholar 

  121. Higgins, D. et al. Immunostimulatory DNA as a vaccine adjuvant. Expert Rev. Vaccines 6, 747–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Porgador, A. et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. 188, 1075–1082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Condon, C. et al. DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. 2, 1122–1128 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Danko, I. et al. High expression of naked plasmid DNA in muscles of young rodents. Hum. Mol. Genet. 6, 1435–1443 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Vandervoort, J. & Ludwig, A. Microneedles for transdermal drug delivery: a minireview. Front. Biosci. 13, 1711–1715 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Tezel, A., Paliwal, S., Shen, Z. & Mitragotri, S. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 23, 3800–3807 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, L. J. et al. Topical application of HIV DNA vaccine with cytokine-expression plasmids induces strong antigen-specific immune responses. Vaccine 20, 42–48 (2001).

    Article  PubMed  Google Scholar 

  128. Calarota, S. A., Weiner, D. B., Lori, F. & Lisziewicz, J. Induction of HIV-specific memory T-cell responses by topical DermaVir vaccine. Vaccine 25, 3070–3074 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Cristillo, A. D. et al. HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology 366, 197–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Fuller, D. H., Loudon, P. & Schmaljohn, C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 40, 86–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, D., Maa, Y. F. & Haynes, J. R. Needle-free epidermal powder immunization. Expert Rev. Vaccines 1, 265–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Lundholm, P. et al. Induction of mucosal IgA by a novel jet delivery technique for HIV-1 DNA. Vaccine 17, 2036–2042 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Epstein, J. E. et al. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum. Gene Ther. 13, 1551–1560 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Cui, Z., Baizer, L. & Mumper, R. J. Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J. Biotechnol. 102, 105–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Imoto, J. & Konishi, E. Needle-free jet injection of a mixture of Japanese encephalitis DNA and protein vaccines: a strategy to effectively enhance immunogenicity of the DNA vaccine in a murine model. Viral Immunol. 18, 205–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Roberts, L. K. et al. Clinical safety and efficacy of a powdered hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine 23, 4867–4878 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Ciernik, I. F., Krayenbuhl, B. H. & Carbone, D. P. Puncture-mediated gene transfer to the skin. Hum. Gene Ther. 7, 893–899 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Nchinda, G. et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Invest. 118, 1427–1436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gothelf, A., Mir, L. M. & Gehl, J. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev. 29, 371–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Giardino, R. et al. Electrochemotherapy a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues. Biomed. Pharmacother. 60, 458–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Heller, L. et al. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res. 10, 577–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Hirao, L. A. et al. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26, 440–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. van Drunen Littel-van den Hurk, S., Babiuk, S. L. & Babiuk, L. A. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol. Rev. 199, 113–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Roos, A. K. et al. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther. 13, 320–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Medi, B. M. & Singh, J. Skin targeted DNA vaccine delivery using electroporation in rabbits II. Safety. Int. J. Pharm. 308, 61–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Babiuk, S. et al. A single HBsAg DNA vaccination in combination with electroporation elicits long-term antibody responses in sheep. Bioelectrochemistry 70, 269–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Kadowaki, S. et al. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation. Vaccine 18, 2779–2788 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Babiuk, S., van Drunen Littel-van den Hurk, S. & Babiuk, L. A. Delivery of DNA vaccines using electroporation. Methods Mol. Med. 127, 73–82 (2006).

    CAS  PubMed  Google Scholar 

  149. Capone, S. et al. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. J. Immunol. 177, 7462–7471 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, Y. et al. Preparation and characterization of a monoclonal antibody against CKLF1 using DNA immunization with in vivo electroporation. Hybridoma (Larchmt) 24, 305–308 (2005).

    Article  CAS  Google Scholar 

  151. Dobano, C., Widera, G., Rabussay, D. & Doolan, D. L. Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine 25, 6635–6645 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Hooper, J. W., Golden, J. W., Ferro, A. M. & King, A. D. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25, 1814–1823 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Li, Z. et al. DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine 24, 4565–4568 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Miller, M. et al. The efficacy of electroporated plasmid vaccines correlates with long-term antigen production in vivo. Vaccine 22, 2517–2523 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Peng, B., Zhao, Y., Xu, L. & Xu, Y. Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine 25, 2064–2073 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Quaglino, E. et al. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res. 64, 2858–2864 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Shiau, Y. T. et al. Analysis of humoral immunity of hepatitis D virus DNA vaccine generated in mice by using different dosage, gene gun immunization, and in vivo electroporation. J. Chin. Med. Assoc. 69, 7–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Spadaro, M. et al. Cure of mammary carcinomas in Her-2 transgenic mice through sequential stimulation of innate (neoadjuvant interleukin-12) and adaptive (DNA vaccine electroporation) immunity. Clin. Cancer Res. 11, 1941–1952 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Wu, C. J., Lee, S. C., Huang, H. W. & Tao, M. H. In vivo electroporation of skeletal muscles increases the efficacy of Japanese encephalitis virus DNA vaccine. Vaccine 22, 1457–1464 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Luckay, A. et al. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J. Virol. 81, 5257–5269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Otten, G. R. et al. Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 24, 4503–4509 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Hirao, L. A. et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26, 3112–3120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Weiner laboratory for helpful discussions, including M.P. Morrow, D. Hokey, D. Laddy and K. Schoenly. We apologize for any important work that was not cited in this article owing to space limitations. The work in D.B.W.'s laboratory is supported in part by funding from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Weiner.

Ethics declarations

Competing interests

The laboratory of D.B.W. has grant funding and collaborations or consulting, including serving on scientific review committees for commercial entities, and in the interest of disclosure therefore notes potential conflicts associated with this work with Wyeth, VGX Pharmaceuticals, Bristol Myers Squibb, Virxsys, Ichor, Merck, Althea, Aldeveron and Inovio, and possibly others. M.A.K. has no competing interests.

Related links

Related links

FURTHER INFORMATION

David B. Weiner's homepage

Gene Therapy Trials Worldwide

Vical

Glossary

Formulation

A mixture of one or more active ingredients is made safe and easy to store, transport, dilute or apply through the presence of other materials (for example, vehicles or solvents).

Cytotoxic T lymphocyte

(CTL. Also known as TC, T-killer cell or killer T cell). Belongs to a sub-group of T lymphocytes that are capable of inducing the death of infected somatic or tumour cells. They target and kill cells that are infected with other pathogens or that are otherwise damaged or dysfunctional.

Adjuvant

An agent that can stimulate the immune system and increase the response to a vaccine, without having any specific antigenic immune response.

Codon optimization

The preference that different organisms show for one of the several codons that encode a particular amino acid. Translationally optimal codons are those that are recognized by abundant tRNAs. Within a phylogenetic group, the frequency of particular codons in a gene is highly correlated with higher translation rates and accuracy.

Subcutaneum

The layer of tissue that lies just under the surface of the skin.

Antigen presenting cell

(APC). Specialized cell that can prime naive T cells through the expression of MHC class I molecules (which are expressed by most cells and can prime CD8+ cytotoxic T cells) as well as MHC class II molecules (which prime CD4+ T helper cells).

Vector interference

The observation that re-administration of the same bacterial or viral vector leads to a reduction in its potency. This occurs because the host's immune response develops neutralizing antibody responses against the vector when it is first administered. DNA does not contain protein targets so there is no vector interference or loss of potency following DNA re-administration.

Electroporation

A physical process that exposes the target tissue to a brief electric-field pulse in order to induce temporary and reversible pores in the cell membrane. During the period of membrane destabilization, molecules such as plasmids can gain intracellular access.

Adventitial agents

Unknown pathogens that are present in the cell lines that are used to produce vaccines and that can become part of the final vaccine preparation. SV40 was discovered this way, as a contaminant of the polioviral vaccine. As DNA vaccines are not produced in mammalian cell culture they can not contain these agents.

Cynomolgus monkey

(Macaca fascicularis). A primarily arboreal macaque that is native to Southeast Asia. It is also called the long-tailed macaque.

Kozak consensus sequence

A specific sequence that occurs on eukaryotic mRNA. This sequence is recognized and required by the ribosome as the translational start site.

Cross-neutralizing antibody

An antibody that recognizes a wide range of antigenic epitopes.

Consensus immunogens

Immunogens that are designed using computer analysis and then coded in DNA vaccines. They are synthesized so that the genes represent the most common amino acid at any position in a sequence, based on a population of viral isolate sequences.

Phage display

A method that uses bacteriophage for high-throughput screening of protein interactions with other proteins, DNA or peptides.

Liposome

Made up of bilayered membranes consisting of polar and non-polar portions of phospholipids that form multilayered shells containing a charged DNA-binding region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzler, M., Weiner, D. DNA vaccines: ready for prime time?. Nat Rev Genet 9, 776–788 (2008). https://doi.org/10.1038/nrg2432

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg2432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing