Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging biomedical applications of synthetic biology

Key Points

  • A decade after the report of the first devices, synthetic biology has developed into an engineering science that provides novel opportunities to understand, diagnose, prevent and treat diseases.

  • Chemical synthesis and reconstruction of extinct or difficult-to-propagate viral genomes improves our understanding of virulence factors.

  • The de novo synthesis of deoptimized viral genomes enables the production of safe life vaccines.

  • Engineering environmentally responsive dominant-lethal genetic circuits into disease-transmitting insects provides a highly specific approach for controlling disease propagation.

  • The reconstruction of bacterial resistance circuits in mammalian cells enables the integrated discovery of agents to overcome resistance.

  • Engineered bacteria and synthetic genetic circuits that specifically detect and destroy neoplastic cells will provide momentum to future cancer therapies.

  • Molecular prostheses that detect disease states and autonomously trigger a therapeutic response in a closed-loop control configuration provide novel opportunities in the treatment of genetic and acquired diseases.

  • Synthetic gene circuits will provide novel opportunities for future gene and cell-based therapies.

Abstract

Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian gene expression control strategies.
Figure 2: Synthetic biology for understanding and preventing disease.
Figure 3: Mammalian-cell-based drug discovery.
Figure 4: Drug delivery.
Figure 5: Bacterial and viral cancer therapy.
Figure 6: Synthetic genetic cancer classifiers.
Figure 7: Advanced therapeutic and prosthetic networks.

Similar content being viewed by others

References

  1. Arkin, A. P. & Schaffer, D. V. Network news: innovations in 21st century systems biology. Cell 144, 844–849 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smolke, C. D. & Silver, P. A. Informing biological design by integration of systems and synthetic biology. Cell 144, 855–859 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jasny, B. R. & Zahn, L. M. Genome-sequencing anniversary. A celebration of the genome, part I. Science 331, 546 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nature Rev. Genet. 12, 443–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotech. 28, 1295–1299 (2010).

    Article  CAS  Google Scholar 

  8. Matzas, M. et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotech. 28, 1291–1294 (2010).

    Article  CAS  Google Scholar 

  9. Quan, J. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotech. 29, 449–452 (2011).

    Article  CAS  Google Scholar 

  10. Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Barak, M. et al. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 37, 6905–6915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Bedau, M. et al. Life after the synthetic cell. Nature 465, 422–424 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Burrill, D. R. & Silver, P. A. Making cellular memories. Cell 140, 13–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotech. 27, 465–471 (2009).

    Article  CAS  Google Scholar 

  18. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Greber, D. & Fussenegger, M. An engineered mammalian band-pass network. Nucleic Acids Res. 38, e174 (2010).

  22. Kramer, B. P. & Fussenegger, M. Hysteresis in a synthetic mammalian gene network. Proc. Natl Acad. Sci. USA 102, 9517–9522 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. Nature Biotech. 22, 867–870 (2004).

    Article  CAS  Google Scholar 

  24. Leisner, M., Bleris, L., Lohmueller, J., Xie, Z. & Benenson, Y. Rationally designed logic integration of regulatory signals in mammalian cells. Nature Nanotechnol. 5, 666–670 (2010).

    Article  CAS  Google Scholar 

  25. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature Biotech. 25, 795–801 (2007).

    Article  CAS  Google Scholar 

  26. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swinburne, I. A., Miguez, D. G., Landgraf, D. & Silver, P. A. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 22, 2342–2346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Toettcher, J. E., Mock, C., Batchelor, E., Loewer, A. & Lahav, G. A synthetic-natural hybrid oscillator in human cells. Proc. Natl Acad. Sci. USA 107, 17047–17052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weber, W. et al. A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl Acad. Sci. USA 104, 2643–2648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011). This paper describes a synthetic network that classifies cells according to their specific microRNA expression profiles. This strategy might be generally applicable for identification andengineering of specific cell types.

    Article  CAS  PubMed  Google Scholar 

  32. Nandagopal, N. & Elowitz, M. B. Synthetic biology: integrated gene circuits. Science 333, 1244–1248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aubel, D. & Fussenegger, M. Mammalian synthetic biology—from tools to therapies. Bioessays 32, 332–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Tigges, M. & Fussenegger, M. Recent advances in mammalian synthetic biology — design of synthetic transgene control networks. Curr. Opin. Biotechnol. 20, 449–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Weber, W. & Fussenegger, M. Synthetic gene networks in mammalian cells. Curr. Opin. Biotechnol. 692, 235–249 (2010).

    Google Scholar 

  36. Weber, W. & Fussenegger, M. Molecular diversity—the toolbox for synthetic gene switches and networks. Curr. Opin. Chem. Biol. 15, 414–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Benenson, Y. RNA-based computation in live cells. Curr. Opin. Biotechnol. 20, 471–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wieland, M. & Fussenegger, M. Ligand-dependent regulatory RNA parts for synthetic biology in eukaryotes. Curr. Opin. Biotechnol. 21, 760–765 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Win, M. N., Liang, J. C. & Smolke, C. D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nature Biotech. 26, 787–793 (2008).

    Article  CAS  Google Scholar 

  41. Greber, D. & Fussenegger, M. Mammalian synthetic biology: engineering of sophisticated gene networks. J. Biotechnol. 130, 329–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kramer, B. P., Fischer, M. & Fussenegger, M. Semi-synthetic mammalian gene regulatory networks. Metab. Eng. 7, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Greber, D., El-Baba, M. D. & Fussenegger, M. Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res. 36, e101 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yao, G., Tan, C., West, M., Nevins, J. R. & You, L. Origin of bistability underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. Nature Biotech. 18, 1203–1208 (2000).

    Article  CAS  Google Scholar 

  48. Gitzinger, M., Kemmer, C., El-Baba, M. D., Weber, W. & Fussenegger, M. Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc. Natl Acad. Sci. USA 106, 10638–10643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karlsson, M., Weber, W. & Fussenegger, M. De novo design and construction of an inducible gene expression system in mammalian cells. Methods Enzymol. 497, 239–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Weber, W., Kramer, B. P. & Fussenegger, M. A genetic time-delay circuitry in mammalian cells. Biotechnol. Bioeng. 98, 894–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl Acad. Sci. USA 104, 17300–17304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. You, L., Cox, R. S., Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Aubel, D. & Fussenegger, M. Watch the clock — engineering biological systems to be on time. Curr. Opin. Genet. Dev. 20, 634–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Tigges, M., Denervaud, N., Greber, D., Stelling, J. & Fussenegger, M. A synthetic low-frequency mammalian oscillator. Nucleic Acids Res. 38, 2702–2711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agapakis, C. M. & Silver, P. A. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol. Biosyst. 5, 704–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Haynes, K. A. & Silver, P. A. Eukaryotic systems broaden the scope of synthetic biology. J. Cell Biol. 187, 589–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nature Biotech. 27, 1139–1150 (2009).

    Article  CAS  Google Scholar 

  62. Purnick, P. E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  63. Kemmer, C. et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J. Control. Release 150, 23–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nature Biotech. 28, 355–360 (2010). This describes the first synthetic closed-loop control gene network that manages homeostasis of a crucial disease metabolite in an animal model.

    Article  CAS  Google Scholar 

  65. Ye, H., Daoud-El Baba, M., Peng, R. W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011). The first optogenetic device that controls the production of a therapeutic protein in an animal disease model is described in this paper.

    Article  CAS  PubMed  Google Scholar 

  66. Fears, R. & ter Meulen, V. The potential of synthetic biology: a view from the European Academies Science Advisory Council. Nature Rev. Microbiol. 9, 222 (2011).

    Article  CAS  Google Scholar 

  67. Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Tumpey, T. M. et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Cohen, J. & Enserink, M. Infectious diseases. As swine flu circles globe, scientists grapple with basic questions. Science 324, 572–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Smith, G. J. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Wimmer, E., Mueller, S., Tumpey, T. M. & Taubenberger, J. K. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nature Biotech. 27, 1163–1172 (2009).

    Article  CAS  Google Scholar 

  74. Becker, M. M. et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl Acad. Sci. USA 105, 19944–19949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burbelo, P. D., Ching, K. H., Bush, E. R., Han, B. L. & Iadarola, M. J. Antibody-profiling technologies for studying humoral responses to infectious agents. Expert Rev. Vaccines 9, 567–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Chandra, A., Wormser, G. P., Marques, A. R., Latov, N. & Alaedini, A. Anti-Borrelia burgdorferi antibody profile in post-Lyme disease syndrome. Clin. Vaccine Immunol. 18, 767–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burbelo, P. D. et al. LIPS arrays for simultaneous detection of antibodies against partial and whole proteomes of HCV, HIV and EBV. Mol. Biosyst. 7, 1453–1462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferrari, S. et al. Mutations of the Igbeta gene cause agammaglobulinemia in man. J. Exp. Med. 204, 2047–2051 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, J. & Reth, M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467, 465–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Larman, H. B. et al. Autoantigen discovery with a synthetic human peptidome. Nature Biotech. 29, 535–541 (2011). This study is a demonstration of how the synthesis of the human peptidome enables the direct identification of new autoantigens.

    Article  CAS  Google Scholar 

  81. Akahata, W. et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Med. 16, 334–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008). This provides a description of a standard strategy for the production of codon- pair deoptimized viral genomes for use as attenuated life vaccines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amidi, M. et al. Optimization and quantification of protein synthesis inside liposomes. J. Liposome Res. 20, 73–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Dance, A. From pond scum to pharmacy shelf. Nature Med. 16, 146–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Dreesen, I. A., Charpin-El Hamri, G. & Fussenegger, M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol. 145, 273–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Fu, G. et al. Female-specific insect lethality engineered using alternative splicing. Nature Biotech. 25, 353–357 (2007).

    Article  CAS  Google Scholar 

  87. Fu, G. et al. Female-specific flightless phenotype for mosquito control. Proc. Natl Acad. Sci. USA 107, 4550–4554 (2010). This paper presents a strategy in which transgenic insects containing a synthetic gene network could provide pest control by disseminating a conditional flightless female phenotype among natural insect populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wise de Valdez, M. R. et al. Genetic elimination of dengue vector mosquitoes. Proc. Natl Acad. Sci. USA 108, 4772–4775 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Subbaraman, N. Science snipes at Oxitec transgenic-mosquito trial. Nature Biotech. 29, 9–11 (2011).

    Google Scholar 

  91. Weber, W. et al. Macrolide-based transgene control in mammalian cells and mice. Nature Biotech. 20, 901–907 (2002).

    Article  CAS  Google Scholar 

  92. Aubel, D. et al. Design of a novel mammalian screening system for the detection of bioavailable, non-cytotoxic streptogramin antibiotics. J. Antibiot. 54, 44–55 (2001).

    Article  CAS  Google Scholar 

  93. Weber, W. & Fussenegger, M. The impact of synthetic biology on drug discovery. Drug Discov. Today 14, 956–963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weber, W. et al. A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc. Natl Acad. Sci. USA 105, 9994–9998 (2008). In this study, the reconstruction of a synthetic antibiotic resistance network in mammalian cells enabled the discovery of novel anti-infective compounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tascou, S. et al. Stringent rosiglitazone-dependent gene switch in muscle cells without effect on myogenic differentiation. Mol. Ther. 9, 637–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Chong, H., Ruchatz, A., Clackson, T., Rivera, V. M. & Vile, R. G. A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol. Ther. 5, 195–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Weber, W. et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res. 31, e71 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Willand, N. et al. Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nature Med. 15, 537–544 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. & Bailey, J. E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nature Biotech. 16, 468–472 (1998).

    Article  CAS  Google Scholar 

  100. Gonzalez-Nicolini, V. & Fussenegger, M. In vitro assays for anticancer drug discovery—a novel approach based on engineered mammalian cell lines. Anticancer Drugs 16, 223–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Gonzalez-Nicolini, V., Fux, C. & Fussenegger, M. A novel mammalian cell-based approach for the discovery of anticancer drugs with reduced cytotoxicity on non-dividing cells. Invest. New Drugs 22, 253–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Li, J. W. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Medema, M. H., Breitling, R., Bovenberg, R. & Takano, E. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nature Rev. Microbiol. 9, 131–137 (2011).

    Article  CAS  Google Scholar 

  104. Noel, J. P. Chemical biology: synthetic metabolism goes green. Nature 468, 380–381 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Runguphan, W., Maresh, J. J. & O'Connor, S. E. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proc. Natl Acad. Sci. USA 106, 13673–13678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Runguphan, W., Qu, X. & O'Connor, S. E. Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 468, 461–464 (2010). This work described the biosynthesis of halogenated molecules in plants using synthetic pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chang, M. C., Eachus, R. A., Trieu, W., Ro, D. K. & Keasling, J. D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chem. Biol. 3, 274–277 (2007).

    Article  CAS  Google Scholar 

  110. Fussenegger, M. The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol. Prog. 17, 1–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Christen, E. H. et al. Conditional DNA–protein interactions confer stimulus-sensing properties to biohybrid materials. Adv. Funct. Mater. 21, 2861–2867 (2011).

    Article  CAS  Google Scholar 

  112. Ehrbar, M., Schoenmakers, R., Christen, E. H., Fussenegger, M. & Weber, W. Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nature Mater. 7, 800–804 (2008).

    Article  CAS  Google Scholar 

  113. Ehrick, J. D. et al. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nature Mater. 4, 298–302 (2005).

    Article  CAS  Google Scholar 

  114. Jakobus, K., Wend, S. & Weber, W. Synthetic mammalian gene networks as a blueprint for the design of interactive biohybrid materials. Chem. Soc. Rev. 6 Sep 2011 (doi:10.1039/C1CS15176B).

    Article  CAS  PubMed  Google Scholar 

  115. Kämpf, M. M. et al. A gene therapy technology-based hydrogel for the trigger inducible release of bipharmaceuticals in mice. Adv. Funct. Mater. 20, 2534–2538 (2010).

    Article  CAS  Google Scholar 

  116. Zhao, H. F., Boyd, J., Jolicoeur, N. & Shen, S. H. A coumermycin/novobiocin-regulated gene expression system. Hum. Gene Ther. 14, 1619–1629 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Rivera, V. M. et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287, 826–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011). This paper describes a novel metabolite-based strategy for the eradication of antibiotic-tolerant bacterial 'persister cells'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, H. H., Molla, M. N., Cantor, C. R. & Collins, J. J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nature Rev. Microbiol. 8, 423–435 (2010).

    Article  CAS  Google Scholar 

  123. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA 106, 4629–4634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernebro, J. Fighting bacterial infections-future treatment options. Drug Resist. Updat. 14, 125–139 (2011).

    Article  PubMed  Google Scholar 

  126. Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Duan, F., Curtis, K. L. & March, J. C. Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl. Environ. Microbiol. 74, 7437–7438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nature Rev. Cancer 10, 785–794 (2010).

    Article  CAS  Google Scholar 

  129. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen, V. H. et al. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 70, 18–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Ganai, S., Arenas, R. B. & Forbes, N. S. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer 101, 1683–1691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Royo, J. L. et al. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nature Methods 4, 937–942 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Xiang, S., Fruehauf, J. & Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nature Biotech. 24, 697–702 (2006).

    Article  CAS  Google Scholar 

  134. Cattaneo, R., Miest, T., Shashkova, E. V. & Barry, M. A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nature Rev. Microbiol. 6, 529–540 (2008).

    Article  CAS  Google Scholar 

  135. Link, N. et al. Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles. Nucleic Acids Res. 34, e16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Voelkel, C. et al. Protein transduction from retroviral Gag precursors. Proc. Natl Acad. Sci. USA 107, 7805–7810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotech. 29, 149–153 (2011).

    Article  CAS  Google Scholar 

  138. Dong, J. G., Fernandez-Maculet, J. C. & Yang, S. F. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc. Natl Acad. Sci. USA 89, 9789–9793 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dorer, D. E. & Nettelbeck, D. M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv. Drug Deliv. Rev. 61, 554–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Howard, P. L., Chia, M. C., Del Rizzo, S., Liu, F. F. & Pawson, T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc. Natl Acad. Sci. USA 100, 11267–11272 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8, 1168–1175 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of cancer cells. Mol. Syst. Biol. 6, 444 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Link, K. H. & Breaker, R. R. Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. 16, 1189–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wieland, M., Benz, A., Klauser, B. & Hartig, J. S. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew. Chem. Int. Edn Engl. 48, 2715–2718 (2009).

    Article  CAS  Google Scholar 

  145. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl Acad. Sci. USA 107, 8531–8536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sadelain, M., Brentjens, R. & Riviere, I. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21, 215–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Culler, S. J., Hoff, K. G. & Smolke, C. D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010). In this paper, the abundance of specific cellular proteins was linked to transcription of target genes via splicing-modulating RNA controllers. This enables proteome-based classification and engineering of individual cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Tabor, J. J., Levskaya, A. & Voigt, C. A. Multichromatic control of gene expression in Escherichia coli. J. Mol. Biol. 405, 315–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yazawa, M., Sadaghiani, A. M., Hsueh, B. & Dolmetsch, R. E. Induction of protein-protein interactions in live cells using light. Nature Biotech. 27, 941–945 (2009).

    Article  CAS  Google Scholar 

  153. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wilkinson, S. P. & Grove, A. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J. Biol. Chem. 279, 51442–51450 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Legoux, R. et al. Cloning and expression in Escherichia coli of the gene encoding Aspergillus flavus urate oxidase. J. Biol. Chem. 267, 8565–8570 (1992).

    Article  CAS  PubMed  Google Scholar 

  156. Fluri, D. A., Kemmer, C., Daoud-El Baba, M. & Fussenegger, M. A novel system for trigger-controlled drug release from polymer capsules. J. Control. Release 131, 211–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Weber, W., Rimann, M., Schafroth, T., Witschi, U. & Fussenegger, M. Design of high-throughput-compatible protocols for microencapsulation, cryopreservation and release of bovine spermatozoa. J. Biotechnol. 123, 155–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Noel, D. et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22, 74–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Nissim, L., Beatus, T. & Bar-Ziv, R. An autonomous system for identifying and governing a cell's state in yeast. Phys. Biol. 4, 154–163 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of W.W. is supported by the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007-2013) ERC Grant agreement number 259043-CompBioMat and the Excellence Initiative of the German Federal and State Governments (EXC 294). Work in the laboratory of M.F. is supported by the Swiss National Science Foundation (grant number 3100A0-112549) and in part by the European Community Framework 7 (Persist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Wilfried Weber's homepage

Martin Fussenegger's homepage:

Amyris

Bioversys

Glossary

Aptamer

An oligonucleic acid that binds to a specific target, such as a chemical compound, a protein or a nucleic acid. Aptamers were found to control riboswitches in natural systems, but they can also be selected in vitro.

Epigenetic toggle switches

Genetic circuits that can be switched between two stable expression states (for example, an 'on' and an 'off' state) by a transient stimulus. In the absence of a switching stimulus, the expression state is locked and inherited across cell generations.

Hysteretic circuits

Genetic circuits whose response dynamics depend on a combination of past and present states.

Eco-sensing

The capacity of a species to sense and score its surrounding ecosystem, for example, to identify the type and population density of neighbouring species.

Quorum sensing

A small-molecule-based chemical language by which bacteria communicate within and across populations (the 'quorum'). Production and response to quorum-sensing molecules is correlated with population density.

Band-pass filters

These are devices that are selectively induced within a specific concentration range of the input signal. At lower or higher trigger levels, the band-pass filter shuts down output signals.

Immunostimulatory liposomes

Liposomes that are decorated with antigenic peptides or proteins that elicit an immune response.

Gene drive system

These are molecular devices that promote the spreading of a specific gene throughout a target population by taking advantage of a mechanism that multiplies the specific gene in the host genome. Gene drive systems produce non-Mendelian patterns of inheritance.

Polyketides

These constitute a group of secondary metabolites produced through linear decarboxylative condensation of acetyl-CoA with several malonyl-CoA-derived extender units to a polyketide chain. Many pharmacologically active compounds, such as antibiotics and anti-cancer drugs, belong to the polyketide class.

SOS DNA repair

Genetically encoded repair program protecting against DNA damage. In prokaryotes, the repair program is coordinated by LexA and RecA.

Persister cells

Dormant individual cells within a bacterial population that show a high tolerance to antimicrobials.

Pharmacokinetics

The action of drugs in the body over a period of time. It covers absorption of the drug as well as its distribution, tissue localization, biotransformation and excretion.

Commensal bacteria

Commensal bacteria live in close contact with the host. In this special type of symbiosis, one partner is benefited, whereas the other is neither benefited nor harmed.

Melanopsin

A vitamin-A-dependent, G-protein-coupled receptor that is expressed in intrinsically photosensitive retinal ganglion cells

Prosthetic networks

Networks that replace existing cellular functionality that is ill-driven or out of order. They represent molecular prostheses for non-functional cellular activity; they differ from other synthetic networks that add useful functionality but do not replace non-functional cellular networks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W., Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat Rev Genet 13, 21–35 (2012). https://doi.org/10.1038/nrg3094

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg3094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing