Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of development in closely related species of flies and worms

Key Points

  • The extensive knowledge of the genetic basis for development of the model organisms Drosophila melanogaster and Caenorhabditis elegans, together with their complete genome sequences, provides a useful tool for comparing their development with that of other closely related species.

  • To identify the genetic changes that underlie small morphological differences, recent studies have used either a candidate-gene approach or, where hybrids are viable, direct classical genetics. This approach can allow the rapid identification of genes that contribute to phenotypic change.

  • Evolution of cis-regulatory sequences that alters gene expression might contribute to phenotypic change.

  • Regulatory modules of developmental genes are subject to continuous sequence change and to stabilizing selection in the absence of morphological change.

  • Co-evolution of transcription factors and their binding sequences can be readily shown using comparisons between closely related species.

  • The redundant cellular interactions that underlie the development of a structure and that contribute to its robustness are also subject to continuous change.

  • Studies of satellite species should help to bridge the gap between evolutionary genetics and comparative embryology.

Abstract

One of the main challenges in evolutionary biology is to identify the molecular changes that underlie phenotypic differences that are of evolutionary significance. Comparative studies of early development have shown that changes in the spatio-temporal use of regulatory genes, as well as changes in the specificity of regulatory proteins, are correlated with important differences in morphology between phylogenetically distant species. However, it is not known how such changes take place in natural populations, and whether they result from a single, or many small, additive events. Extending this approach to the study of development of closely related species promises to enrich this debate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the bicoid gene in Diptera.
Figure 2: Evolution of sexually dimorphic pigmentation in Drosophila.
Figure 3: Conservation of the hunchback promoter in Diptera.

Similar content being viewed by others

References

  1. Mackay, T. F. & Langley, C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348, 64–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Long, A. D. et al. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139, 1273–1291 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. True, J. R., Liu, J., Stam, F., Zeng, Z. B. & Laurie, C. C. Quantitative genetic analysis of divergence on male secondary sexual traits between Drosophila simulans and Drosophila mauritiana. Evolution 51, 816–832 (1997).

    Article  PubMed  Google Scholar 

  4. Lai, C., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay, T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266, 1697–1702 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Long, A. D., Lyman, R. F., Langley, C. H. & Mackay, T. F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Mackay, T. F. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution Int. J. Org. Evolution 54, 1079–1091 (2000).

    Article  CAS  Google Scholar 

  9. Arnone, M. I. & Davidson, E. H. The hardwiring of development: organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Carroll, S., Grenier, J. K. & Weatherbee, S. D. in From DNA to Diversity (ed. Carroll, S.) 1–214 (Blackwell Science, London, 2001).

    Google Scholar 

  11. Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Averof, M. & Patel, N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Abzhanov, A. & Kaufman, T. C. Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126, 1121–1128 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. Bender, W. et al. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 23–29 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Martin, C. H. et al. Complete sequence of the bithorax complex of Drosophila. Proc. Natl Acad. Sci. USA 92, 8398–8402 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910–913 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ronshaugen, M., McGinnis, N. & McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature 415, 914–917 (2002).

    Article  PubMed  Google Scholar 

  23. Shiga, Y., Yasumoto, R., Yamagata, H. & Hayashi, S. Evolving role of Antennapedia protein in arthropod limb patterning. Development 129, 3555–3561 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Driever, W. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 301–324 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  25. Rushlow, C. & Levine, M. Role of the zerknullt gene in dorsal–ventral pattern formation in Drosophila. Adv. Genet. 27, 277–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Falciani, F. et al. Class 3 Hox genes in insects and the origin of zen. Proc. Natl Acad. Sci. USA 93, 8479–8484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Powers, T. P. et al. Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: Culicidae). Evol. Dev. 2, 311–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Stauber, M., Prell, A. & Schmidt-Ott, U. A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc. Natl Acad. Sci. USA 99, 274–279 (2002). Describes a single Hox3 gene from basal species of Diptera and finds an interesting correlation between gene duplication at this locus with changes in early embryonic development in flies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schröder, R. & Sander, R. A comparison of transplantable Bicoid activity and partial Bicoid homeobox sequences in several Drosophila and blowfly species. Roux's Arch. Dev. Biol. 203, 34–43 (1993).

    Article  Google Scholar 

  30. Stauber, M., Jackle, H. & Schmidt-Ott, U. The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc. Natl Acad. Sci. USA 96, 3786–3789 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brown, S. et al. A strategy for mapping bicoid on the phylogenetic tree. Curr. Biol. 11, R43–R44 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Pankratz, M. J. & Jäckle, H. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 467–516 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  33. Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W. J. & Jackle, H. RNA binding and translational suppression by bicoid. Nature 379, 746–749 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, S. K. & Struhl, G. Sequence-specific RNA binding by bicoid. Nature 388, 634 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Niessing, D. et al. Homeodomain position 54 specifies transcriptional versus translational control by Bicoid. Mol. Cell 5, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Dubnau, J. & Struhl, G. RNA recognition and translational regulation by a homeodomain protein. Nature 379, 694–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Rozowski, M. & Akam, M. Hox gene control of segment-specific bristle patterns in Drosophila. Genes Dev. 16, 1150–1162 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stern, D. L. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466 (1998). Relates a subtle morphological difference in leg morphology with evolution of the cis -regulatory sequences at the Ubx locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, B. B. et al. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74, 29–42 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Greenwald, I. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 519–542 (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  42. Sigrist, C. B. & Sommer, R. J. Vulva formation in Pristionchus pacificus relies on continuous gonadal induction. Dev. Genes Evol. 209, 451–459 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Eizinger, A., Jungblut, B. & Sommer, R. J. Evolutionary change in the functional specificity of genes. Trends Genet. 15, 197–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Clark, S. G., Chisholm, A. D. & Horvitz, H. R. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74, 43–55 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Clandinin, T. R., Katz, W. S. & Sternberg, P. W. Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. Dev. Biol. 182, 150–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Grandien, K. & Sommer, R. J. Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences. Genes Dev. 15, 2161–2172 (2001). The difference in the function of lin-39 between these two nematode species is shown to arise from changes in the cellular context in which it acts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kopp, A., Duncan, I., Godt, D. & Carroll, S. B. Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408, 553–559 (2000). A remarkable study showing that recent regulatory inputs at the bab gene are important in the evolution of sexual dimorphism in pigment patterns.

    Article  CAS  PubMed  Google Scholar 

  48. Kopp, A. & Duncan, I. Control of cell fate and polarity in the adult abdominal segments of Drosophila by optomotor-blind. Development 124, 3715–3726 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci. USA 97, 4530–4534 (2000). A hybrid analysis between closely related species of drosophilids was used to identify the gene responsible for a discrete difference in larval phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mevel-Ninio, M., Terracol, R. & Kafatos, F. C. The ovo gene of Drosophila encodes a zinc finger protein required for female germ line development. EMBO J. 10, 2259–2266 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Payre, F., Vincent, A. & Carreno, S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 400, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kimura, M. in The Neutral Theory of Molecular Evolution 1–367 (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  53. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Gibson, G. & Hogness, D. S. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271, 200–203 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Gibson, G., Wemple, M. & van Helden, S. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster. Genetics 151, 1081–1091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hancock, J. M., Shaw, P. J., Bonneton, F. & Dover, G. A. High sequence turnover in the regulatory regions of the developmental gene hunchback in insects. Mol. Biol. Evol. 16, 253–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Treier, M., Pfeifle, C. & Tautz, D. Comparison of the gap segmentation gene hunchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change. EMBO J. 8, 1517–1525 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ludwig, M. Z., Bergman, C., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000). A study of chimeric enhancers from a regulatory region of the even-skipped gene of closely related Drosophila spp. provides evidence for stabilizing selection. The authors predict that many regulatory elements will be subject to sequence substitutions, which might have far-reaching consequences.

    Article  CAS  PubMed  Google Scholar 

  60. Small, S., Blair, A. & Levine, M. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047–4057 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arnosti, D. N., Barolo, S., Levine, M. & Small, S. The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 122, 205–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Ludwig, M. Z., Patel, N. H. & Kreitman, M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development 125, 949–958 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ludwig, M. Z. & Kreitman, M. Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol. Biol. Evol. 12, 1002–1011 (1995).

    CAS  PubMed  Google Scholar 

  64. Sackerson, C. Patterns of conservation and divergence at the even-skipped locus of Drosophila. Mech. Dev. 51, 199–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Dover, G. A. & Flavell, R. B. Molecular coevolution: DNA divergence and the maintenance of function. Cell 38, 622–623 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. Dover, G. How genomic and developmental dynamics affect evolutionary processes. Bioessays 22, 1153–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Skaer, N. & Simpson, P. Genetic analysis of bristle loss in hybrids between Drosophila melanogaster and D. simulans provides evidence for divergence of cis-regulatory sequences in the achaete-scute gene complex. Dev. Biol. 221, 148–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Driever, W. & Nusslein-Volhard, C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138–143 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Struhl, G., Struhl, K. & Macdonald, P. M. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259–1273 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Sommer, R. & Tautz, D. Segmentation gene expression in the housefly Musca domestica. Development 113, 419–430 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Bonneton, F., Shaw, P. J., Fazakerley, C., Shi, M. & Dover, G. A. Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster. Mech. Dev. 66, 143–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Lukowitz, W., Schroder, C., Glaser, G., Hulskamp, M. & Tautz, D. Regulatory and coding regions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster. Mech. Dev. 45, 105–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. McGregor, A. P. et al. Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol. Dev. 3, 397–407 (2001). A comparison of the hunchback promoter between Dipteran species, providing evidence for co-evolution of selected compensatory mutations in cis and trans in response to continuous promoter restructuring.

    Article  CAS  PubMed  Google Scholar 

  74. Hanes, S. D., Riddihough, G., Ish-Horowicz, D. & Brent, R. Specific DNA recognition and intersite spacing are critical for action of the bicoid morphogen. Mol. Cell. Biol. 14, 3364–3375 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma, X., Yuan, D., Diepold, K., Scarborough, T. & Ma, J. The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195–1206 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Shaw, P. J., Salameh, A., McGregor, A. P., Bala, S. & Dover, G. A. Divergent structure and function of the bicoid gene in Muscoidea fly species. Evol. Dev. 3, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Shaw, P. J., Wratten, N. S., McGregor, A. P. & Dover, G. A. Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera. Evol. Dev. 4, 265–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Katz, W. S., Hill, R. J., Clandinin, T. R. & Sternberg, P. W. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 82, 297–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Simske, J. S. & Kim, S. K. Sequential signalling during Caenorhabditis elegans vulval induction. Nature 375, 142–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Kenyon, C. A perfect vulva every time: gradients and signaling cascades in C. elegans. Cell 82, 171–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Thomas, J. H. Thinking about genetic redundancy. Trends Genet. 9, 395–399 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Felix, M. A. et al. Evolution of vulva development in the Cephalobina (Nematoda). Dev. Biol. 221, 68–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Sommer, R. J. & Sternberg, P. W. Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. Curr. Biol. 6, 52–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Sommer, R. J., Carta, L. K., Kim, S. Y. & Sternberg, P. W. Morphological, genetic and molecular description of Pristionchus pacificus: a genetic analysis. Fund. Appl. Nemat. 19, 511–521 (1996).

    Google Scholar 

  86. Sommer, R. J. Evolutionary changes of developmental mechanisms in the absence of cell lineage alterations during vulva formation in the Diplogastridae (Nematoda). Development 124, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Jungblut, B. & Sommer, R. J. Novel cell–cell interactions during vulva development in Pristionchus pacificus. Development 127, 3295–3303 (2000). Describes unusual cell interactions that are involved in vulval development of P. pacificus that differ from those used in C. elegans and their redundancy.

    Article  CAS  PubMed  Google Scholar 

  88. Srinivasan, J. et al. Microevolutionary analysis of the nematode genus Pristionchus suggests a recent evolution of redundant developmental mechanisms during vulva formation. Evol. Dev. 3, 229–240 (2001). The authors have examined 13 strains of worms from the genus Pristionchus and show that differences in development of the vulva are due to a small number of changes in developmental control genes.

    Article  CAS  PubMed  Google Scholar 

  89. Fay, D. S. & Han, M. Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development 127, 4049–4060 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Delattre, M. & Felix, M. A. Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius. Curr. Biol. 11, 631–643 (2001). This study describes polymorphisms in the lineages of vulval precursor cells both within and between worm species and shows a link between natural variability and rapid evolution.

    Article  CAS  PubMed  Google Scholar 

  91. Dichtel, M. L., Louvet-Vallee, S., Viney, M. E., Felix, M. A. & Sternberg, P. W. Control of vulval cell division number in the nematode Oscheius/Dolichorhabditis sp. CEW1. Genetics 157, 183–197 (2001). Mutants that affect the division, but not the fate, of vulval precursor cells, have been isolated with ease in species of Oscheius and Dolichorhabditis , showing that, in contrast to C. elegans , these two processes are not tightly linked in these species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Waddington, C. H. Canalization of development and inheritance of acquired factors. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  93. Gibson, G. & Wagner, G. Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22, 372–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Sommer, R. J. As good as they get: cells in nematode vulva development and evolution. Curr. Opin. Cell Biol. 13, 715–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Schnabel, R. Why does a nematode have an invariant cell lineage? Semin. Cell. Dev. Biol. 8, 341–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Labouesse, M. & Mango, S. E. Patterning the C. elegans embryo: moving beyond the cell lineage. Trends Genet. 15, 307–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Voronov, D. A. & Panchin, Y. V. Cell lineage in marine nematode Enoplus brevis. Development 125, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Kimble, J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 87, 286–300 (1981).

    Article  CAS  PubMed  Google Scholar 

  99. Maloof, J. N. & Kenyon, C. The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development 125, 181–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Eisenmann, D. M., Maloof, J. N., Simske, J. S., Kenyon, C. & Kim, S. K. The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 125, 3667–3680 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Hill, R. J. & Sternberg, P. W. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358, 470–476 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Eizinger, A. & Sommer, R. J. The homeotic gene lin-39 and the evolution of nematode epidermal cell fates. Science 278, 452–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Sommer, R. J. et al. The Pristionchus HOX gene Ppa-lin-39 inhibits programmed cell death to specify the vulva equivalence group and is not required during vulval induction. Development 125, 3865–3873 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Peixoto, A. A. et al. Molecular coevolution within a Drosophila clock gene. Proc. Natl Acad. Sci. USA 95, 4475–4480 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maier, D., Preiss, A. & Powell, J. R. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila. EMBO J. 9, 3957–3966 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Langeland, J. A. & Carroll, S. B. Conservation of regulatory elements controlling hairy pair-rule stripe formation. Development 117, 585–596 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Williams, J. A., Paddock, S. W., Vorwerk, K. & Carroll, S. B. Organization of wing formation and induction of a wing-patterning gene at the dorsal/ventral compartment boundary. Nature 368, 299–305 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J. Macro-evolution of the hairy enhancer in Drosophila species. J. Exp. Zool. 291, 175–185 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Discussions with M. Labouesse and comments on the manuscript from J.-M. Gibert and the three anonymous reviewers are gratefully acknowledged. Work in the author's laboratory is funded by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

AbdB

achaete-scute

Antp

bab

bcd

caudal

chordin

Deformed

Dpp

dsx

eve

Giant

Hb

hedgehog

Kruppel

ovo

Orthodenticle

Rb

RbAp48

short gastrulation

Ubx

zen

WormBase

cye-1

lin-39

Glossary

SATELLITE SPECIES

Species that are sufficiently closely related to the well-known model species that the underlying genetic regulation of homologous cellular processes can be compared.

DIPTERA

The true flies, an order of insects with a single pair of wings.

ANLAGE

A group of cells that are destined to become a specific structure or tissue in the adult, but have not yet differentiated.

CYCLORRAPHOUS FLIES

Highly derived Diptera in which pupal development and metamorphosis take place in a puparium, a modified form of the last larval cuticle.

TRICHOME

A thin, cuticular, non-sensory process that is secreted by an individual cell.

MONOMORPHIC SPECIES

A species in which males and females are structurally identical for the trait that is under consideration.

FATE MAP

The description of the cell divisions from fertilized egg to adult, which are linked to the eventual anatomical position of the cell in the animal and the differentiated state, or fate, of the cell.

BLAST CELL

An undifferentiated precursor cell.

EQUIVALENCE GROUP

A group of cells with the same developmental or genetic potential. Any subsequent differences between them generally result from extrinsic signals.

COMPLEMENT

Two alleles that each give a mutant phenotype when homozygous, are said to complement if they give a wild-type phenotype when combined in the same individual.

GENE CONVERSION

The non-reciprocal transfer of genetic information between homologous genes, as a consequence of mismatch repair after heteroduplex formation.

PRIMARY PAIR-RULE GENES

Pair-rule genes are expressed in alternating stripes and function to allocate cells to the different segments of the body. The primary pair-rule genes respond to several upstream factors by means of complex modular promoters.

GENETIC DRIFT

The random fluctuations in allele frequencies over time that are due to chance alone.

STABILIZING SELECTION

Selection that favours intermediate phenotypes over extreme phenotypes.

CANALIZATION

The buffering or stabilization of developmental pathways against mutational or environmental perturbations, by several genetic factors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, P. Evolution of development in closely related species of flies and worms. Nat Rev Genet 3, 907 (2002). https://doi.org/10.1038/nrg947

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing