Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enzyme replacement and enhancement therapies: lessons from lysosomal disorders

A Correction to this article was published on 01 February 2003

Key Points

  • Lysosomal storage diseases (LSDs) are caused by mutations in genes that encode lysosomal proteins, in most cases lysosomal enzymes.

  • Most treatment strategies for LSDs are based on replacing the missing or defective lysosomal protein in the appropriate target sites of pathology.

  • In the 1990s, several 'breakthrough' technologies led to the rapid development of enzyme replacement therapy (ERT) for LSDs. These included: the development of eukaryotic expression systems for lysosomal proteins; and the construction of new mouse models of LSDs by gene targeting.

  • Preclinical studies in animal models have shown the efficacy of ERT for the treatment of LSDs, but have also identified its limitations, including the inability to deliver exogenous enzymes efficiently to the central nervous system (CNS).

  • ERT became available for the first LSD — type I Gaucher disease — in 1991, and ten years of experience in more than 3,000 patients has revealed its remarkable efficacy and safety.

  • ERT is also available for Fabry disease, and is now being evaluated in clinical trials for several other LSDs.

  • New therapeutic strategies, including chaperone-mediated enzyme enhancement therapy (EET), are now being evaluated for LSDs.

  • One principal advantage of EET as compared with ERT is the potential for treating diseases with CNS involvement, because low-molecularweight pharmacological chaperones are able to cross the blood–brain barrier.

Abstract

The past decade has witnessed remarkable advances in our ability to treat inherited metabolic disorders, especially the lysosomal storage diseases, a group of more than 40 disorders, each of which is caused by the deficiency of a lysosomal enzyme or protein. During the past few years, both enzyme replacement and enhancement therapies have been developed to treat these disorders. This review discusses the successes and shortcomings of these therapeutic strategies, and the contributions that they have made to treating lysosomal storage diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lysosomal enzyme sorting by the mannose-6-phosphate receptor system.
Figure 2: Proposed mechanism of enzyme rescue by pharmacological chaperones.

Similar content being viewed by others

References

  1. Scriver, C. R. et al. (eds) The Metabolic and Molecular Bases of Inherited Diseases (McGraw–Hill, New York, 2001). A four-volume textbook containing chapters on each LSD and other inherited metabolic diseases.

    Google Scholar 

  2. Meikle, P. J., Hopwood, J. J., Clague, A. E. & Carey, W. F. Prevalence of lysosomal storage disorders. JAMA 281, 249–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Holtzman, E. (ed.) Lysosomes (Plenum, New York, 1989).

    Book  Google Scholar 

  4. Kornfeld, S. & Mellman, I. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483–525 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Sabatini, D. D. & Adesnik, M. B. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 475–484 (McGraw–Hill, New York, 2001).

    Google Scholar 

  6. Kornfeld, S. & Sly, W. S. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 3469–3482 (McGraw–Hill, New York, 2001).

    Google Scholar 

  7. de Duve, C. From cytases to lysosomes. Fed. Proc. 23, 1045 (1964). In this paper, de Duve first proposes that ERT could be used to treat LSDs.

    CAS  Google Scholar 

  8. Barton, R. W. & Neufeld, E. F. The Hurler corrective factor. Purification and some properties. J. Biol. Chem. 246, 7773–7779 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Hickman, S. & Neufeld, E. F. A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem. Biophys. Res. Commun. 49, 992–999 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Kaplan, A., Achord, D. T. & Sly, W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc. Natl Acad. Sci. USA 74, 2026–2030 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahagian, G. G., Distler, J. & Jourdian, G. W. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular β-galactosidase. Proc. Natl Acad. Sci. USA 78, 4289–4293 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kornfeld, S. Lysosomal enzyme targeting. Biochem. Soc. Trans. 18, 367–374 (1990). A seminal review that describes the biosynthesis of N -linked oligosaccharides on lysosomal enzymes, and the M6P-receptor-mediated pathway for the delivery of lysosomal enzymes to the lysosome.

    Article  CAS  PubMed  Google Scholar 

  13. Hille-Rehfeld, A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta 1241, 177–194 (1995).

    Article  PubMed  Google Scholar 

  14. Kornfeld, S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61, 307–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Frustaci, A. et al. Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N. Engl. J. Med. 345, 25–32 (2001). First clinical example of EET for an LSD. Administration of galactose as a reversible competitive inhibitor rescued mutant α-galactosidase activity and improved heart function.

    Article  CAS  PubMed  Google Scholar 

  16. Treacy, E. P., Valle, D. & Scriver, C. R. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 175–191 (McGraw–Hill, New York, 2001).

    Google Scholar 

  17. Sly, W. S. & Vogler, C. Brain-directed gene therapy for lysosomal storage disease: going well beyond the blood–brain barrier. Proc. Natl Acad. Sci. USA 99, 5760–5762 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabrera-Salazar, M. A., Novelli, E. & Barranger, J. A. Gene therapy for the lysosomal storage disorders. Curr. Opin. Mol. Ther. 4, 349–358 (2002).

    CAS  PubMed  Google Scholar 

  19. Porter, M. T., Fluharty, A. L. & Kihara, H. Correction of abnormal cerebroside sulfate metabolism in cultured metachromatic leukodystrophy fibroblasts. Science 172, 1263–1265 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. O'Brien, J. S., Miller, A. L., Loverde, A. W. & Veath, M. L. Sanfilippo disease type B: enzyme replacement and metabolic correction in cultured fibroblasts. Science 181, 753–755 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Cantz, M. & Kresse, H. Sandhoff disease: defective glycosaminoglycan catabolism in cultured fibroblasts and its correction by β-N-acetylhexosaminidase. Eur. J. Biochem. 47, 581–590 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Desnick, R. J. (ed.) Enzyme Therapy in Genetic Diseases Vol. 2 (Alan R. Liss, Inc., New York, 1980).

    Google Scholar 

  23. Desnick, R. J. & Grabowski, G. in Advances in Human Genetics Vol. 11 (eds Harris, H. & Hirschhorn, K.) 281–349 (Plenum, New York, 1981).

    Google Scholar 

  24. Desnick, R. J. (ed.) Treatment of Genetic Diseases (Churchill Livingstone, New York, 1991).

    Google Scholar 

  25. Johnson, W. G. et al. in Enzyme Therapy in Genetic Diseases (eds Desnick, R. J., Bernlohr, R. W. & Krivit, W.) 120–124 (Williams & Wilkins, Baltimore, Maryland, 1973).

    Google Scholar 

  26. de Barsy, T., Jacquemin, P., van Hoof, F. & Hers, H. G. in Enzyme Therapy in Genetic Diseases (eds Desnick, R. J., Bernlohr, R. W. & Krivit, W.) 184–190 (Williams & Wilkins, Baltimore, Maryland, 1973).

    Google Scholar 

  27. Brady, R. O. et al. Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry's disease. N. Engl. J. Med. 289, 9–14 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Desnick, R. J., Dean, K. J., Grabowski, G., Bishop, D. F. & Sweeley, C. C. Enzyme therapy in Fabry disease: differential in vivo plasma clearance and metabolic effectiveness of plasma and splenic α-galactosidase A isozymes. Proc. Natl Acad. Sci. USA 76, 5326–5330 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R. & Dekaban, A. S. Replacement therapy for inherited enzyme deficiency: use of purified glucocerebrosidase in Gaucher's disease. N. Engl. J. Med. 291, 989–993 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Desnick, R. J., Bernlohr, R. W. & Krivit, W. (eds) Enzyme Therapy in Genetic Diseases (Williams & Wilkins, Baltimore, Maryland, 1973).

    Google Scholar 

  31. von Specht, B. U. et al. Enzyme replacement in Tay–Sachs disease. Neurology 29, 848–854 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Rattazzi, M. C. & Dobrrenis, K. in Treatment of Genetic Diseases (ed. Desnick, R. J.) 131–152 (Churchill Livingstone, New York, 1991).

    Google Scholar 

  33. Dobrenis, K., Joseph, A. & Rattazzi, M. C. Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc. Natl Acad. Sci. USA 89, 2297–2301 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barton, N. W., Furbish, F. S., Murray, G. J., Garfield, M. & Brady, R. O. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc. Natl Acad. Sci. USA 87, 1913–1916 (1990). This article convincingly describes the effectiveness of ERT for type I Gaucher disease. These studies provided the proof-of-principle that ERT can reverse the underlying pathology in a human LSD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher's disease. N. Engl. J. Med. 324, 1464–1470 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Brady, R. O. & Barton, N. W. in Treatment of Genetic Diseases (ed. Desnick, R. J.) 153–168 (Churchill Livingstone, New York, 1991).

    Google Scholar 

  37. Weinreb, N. J. et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am. J. Med. 113, 112–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Grabowski, G. A., Leslie, N. & Wenstrup, R. Enzyme therapy for Gaucher disease: the first 5 years. Blood Rev. 12, 115–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Mistry, P. K. Gaucher's disease: a model for modern management of a genetic disease. J. Hepatol. 30, 1–5 (1999).

    PubMed  Google Scholar 

  40. Ioannou, Y. A., Bishop, D. F. & Desnick, R. J. Overexpression of human α-galactosidase A results in its intracellular aggregation, crystallization in lysosomes and selective secretion. J. Cell Biol. 119, 1137–1150 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Bijvoet, A. G. et al. Human acid α-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum. Mol. Genet. 8, 2145–2153 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Miranda, S. R. et al. Infusion of recombinant human acid sphingomyelinase into Niemann–Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J. 14, 1988–1995 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Ioannou, Y. A., Zeidner, K. M., Gordon, R. E. & Desnick, R. J. Fabry disease: preclinical studies demonstrate the effectiveness of α-galactosidase A replacement in enzyme-deficient mice. Am. J. Hum. Genet. 68, 14–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Selden, R. F., Skoskiewicz, M. J., Howie, K. B., Russell, P. S. & Goodman, H. M. Implantation of genetically engineered fibroblasts into mice: implications for gene therapy. Science 236, 714–718 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Cramer, C. L. et al. Bioproduction of human enzymes in transgenic tobacco. Am. NY Acad. Sci. 792, 62–71 (1996).

    Article  CAS  Google Scholar 

  46. Desnick, R. J., Patterson, D. F. & Scarpelli, D. G. Animal Models of Inherited Metabolic Diseases (Alan R. Liss, Inc., New York, 1982).

    Google Scholar 

  47. Sango, K. et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genet. 11, 170–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Platt, F. M. & Butters, T. D. New therapeutic prospects for the glycosphingolipid lysosomal storage diseases. Biochem. Pharmacol. 56, 421–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, A. M. et al. Generation of a mouse model with α-galactosidase A deficiency. Am. J. Hum. Genet. 59, A208 (1996).

    Google Scholar 

  50. Ohshima, T. et al. α-Galactosidase A deficient mice: a model of Fabry disease. Proc. Natl Acad. Sci. USA 94, 2540–2544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Horinouchi, K., Sakiyama, T., Pereira, L., Lalley, P. A. & Schuchman, E. H. Mouse models of Niemann–Pick disease: mutation analysis and chromosomal mapping rule out the type A and B forms. Genomics 18, 450–451 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Otterbach, B. & Stoffel, W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann–Pick disease). Cell 81, 1053–1061 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Hess, B. et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl Acad. Sci. USA 93, 14821–14826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clarke, L. A. et al. Murine mucopolysaccharidosis type I: targeted disruption of the murine α-L-iduronidase gene. Hum. Mol. Genet. 6, 503–511 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Li, H. H. et al. Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding α-N-acetylglucosaminidase. Proc. Natl Acad. Sci. USA 96, 14505–14510 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Evers, M. et al. Targeted disruption of the arylsulfatase B gene results in mice resembling the phenotype of mucopolysaccharidosis VI. Proc. Natl Acad. Sci. USA 93, 8214–8219 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bijvoet, A. G. et al. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum. Mol. Genet. 7, 53–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Raben, N. et al. Targeted disruption of the acid α-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J. Biol. Chem. 273, 19086–19092 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Du, H. et al. Enzyme therapy for lysosomal acid lipase deficiency in the mouse. Hum. Mol. Genet. 10, 1639–1648 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bhaumik, M. et al. A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology 9, 1389–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Vogler, C. et al. A murine model of mucopolysaccharidosis VII. Gross and microscopic findings in β-glucuronidase-deficient mice. Am. J. Pathol. 136, 207–217 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tybulewicz, V. L. et al. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357, 407–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Sidransky, E., Sherer, D. M. & Ginns, E. I. Gaucher disease in the neonate: a distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. Pediatr. Res. 32, 494–498 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Jeyakumar, M. et al. An inducible mouse model of late onset Tay–Sachs disease. Neurobiol. Dis. 10, 201 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Takahashi, H. et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc. Natl Acad. Sci. USA 99, 13777–13782 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuziuk, J. A. et al. Specificity of mouse GM2 activator protein and β-N-acetylhexosaminidases A and B. Similarities and differences with their human counterparts in the catabolism of GM2. J. Biol. Chem. 273, 66–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Brooks, D. A. Immune response to enzyme replacement therapy in lysosomal storage disorder patients and animal models. Mol. Genet. Metab. 68, 268–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Fan, J. Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med. 5, 112–115 (1999). The first demonstration of EET for a LSD, in which a substrate inhibitor was used to rescue mutant α-galactosidase A glycopeptides from ER degradation and transport them to the lysosome.

    Article  CAS  PubMed  Google Scholar 

  69. Marathe, S. et al. Creation of a mouse model for non-neurological (type B) Niemann–Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum. Mol. Genet. 9, 1967–1976 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Altarescu, G. et al. The efficacy of enzyme replacement therapy in patients with chronic neuronopathic Gaucher's disease. J. Pediatr. 138, 539–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Aoki, M. et al. Improvement of neurological symptoms by enzyme replacement therapy for Gaucher disease type IIIb. Eur. J. Pediatr. 160, 63–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Neufeld, E. F. & Muenzer, J. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 3421–3452 (McGraw–Hill, New York, 2001).

    Google Scholar 

  73. Schiffmann, R. et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285, 2743–2749 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Eng, C. M. et al. Safety and efficacy of recombinant human α-galactosidase A replacement therapy in Fabry's disease. N. Engl. J. Med. 345, 9–16 (2001). This paper reported the results of the largest clinical trial in a LSD, which showed that ERT reversed the fundamental pathology of Fabry disease and was safe and effective for treatment.

    Article  CAS  PubMed  Google Scholar 

  75. Eng, C. M. et al. A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am. J. Hum. Genet. 68, 711–722 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schiffmann, R. et al. Infusion of α-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc. Natl Acad. Sci. USA 97, 365–370 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van den Hout, H. et al. First clinical test with recombinant human α-glucosidase from rabbit milk shows therapeutic effect in Pompe disease. Am. J. Hum. Genet. 67 (Suppl.2), 6 (2000).

    Google Scholar 

  78. Van den Hout, J. M. et al. Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk. J. Inherit. Metab. Dis. 24, 266–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kishnani, P. et al. Treatment of classical infantile Pompe disease (CIPD) with recombinant human acid α glucosidase (rhGAA): preliminary 6 month data from a phase 2 study. Am. J. Hum. Genet. 71, 582 (2002).

    Google Scholar 

  80. Amalfitano, A. et al. Recombinant human acid α-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet. Med. 3, 132–138 (2001).

    CAS  PubMed  Google Scholar 

  81. van der Ploeg, A. T. et al. Preliminary findings in patients with late onset Pompe's disease treated with recombinant human α-glucosidase from rabbit milk. J. Inherit. Metab. Dis. 25, 118 (2002).

    Google Scholar 

  82. Kakkis, E. D. et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N. Engl. J. Med. 344, 182–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Beck, M. et al. A phase 3 study of rhIDUA enzyme therapy for MPS I. J. Inherit. Metab. Dis. 25, 120 (2002).

    Google Scholar 

  84. Muenzer, J., Towle, D., Calikoglu, M. & McCandlless, S. A phase I/II clinical study evaluating the safety and clinical activity of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Am. J. Hum. Genet. 71, 582 (2002).

    Google Scholar 

  85. Harmatz, P. et al. A phase I/II study of enzyme replacement therapy (ERT) for mucopolysaccharidosis VI (MPS VI; Maroteaux–Lamy syndrome): 48 week progress report. Am. J. Hum. Genet. 71, 582 (2002).

    Google Scholar 

  86. Bonten, E. J. et al. Effective enzyme replacement therapy of murine galactosialidosis using insect cell-expressed PPCA and neuraminidase. Am. J. Hum. Genet. 71, 420 (2002).

    Google Scholar 

  87. Vogler, C. et al. Enzyme replacement in murine mucopolysaccharidosis type VII: neuronal and glial response to β-glucuronidase requires early initiation of enzyme replacement therapy. Pediatr. Res. 45, 838–844 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Sands, M. S. et al. Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated β-glucuronidase in the murine model of mucopolysaccharidosis VII. J. Biol. Chem. 276, 43160–43165 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Desnick, R. J., Ioannou, Y. A. & Eng, C. M. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 3733–3774 (McGraw–Hill, New York, 2001).

    Google Scholar 

  90. Miranda, S. R., Erlich, S., Friedrich, V. L. Jr, Gatt, S. & Schuchman, E. H. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann–Pick disease. Gene Ther. 7, 1768–1776 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hampton, R. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14, 476 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  94. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J. & Kopito, R. R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Cox, D. W. in The Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R. et al.) 5559–5586 (McGraw–Hill, New York, 2001).

    Google Scholar 

  96. Carrell, R. W. & Lomas, D. A. α1-Antitrypsin deficiency — a model for conformational diseases. N. Engl. J. Med. 346, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Loo, T. W. & Clarke, D. M. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J. Biol. Chem. 272, 709–712 (1997). One of the first descriptions of EET showing that substrates and modulator compounds bound to the multidrug resistance protein could rescue mutant proteins and transport them to the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  98. Burrows, J. A., Willis, L. K. & Perlmutter, D. H. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc. Natl Acad. Sci. USA 97, 1796–1801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Welch, W. J. & Brown, C. R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1, 109–115 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S. & Welch, W. J. Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rubenstein, R. C., Egan, M. E. & Zeitlin, P. L. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing ΔF508-CFTR. J. Clin. Invest. 100, 2457–2465 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Welch, W. J. & Howard, M. Antagonists to the rescue. J. Clin. Invest. 105, 853–854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morello, J. P., Petaja-Repo, U. E., Bichet, D. G. & Bouvier, M. Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol. Sci. 21, 466–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Okumiya, T. et al. Galactose stabilizes various missense mutants of α-galactosidase in Fabry disease. Biochem. Biophys. Res. Commun. 214, 1219–1224 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Asano, N. et al. In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur. J. Biochem. 267, 4179–4186 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Desnick, R. J., Thorpe, S. R. & Fiddler, M. B. Toward enzyme therapy for lysosomal storage disease. Physiol. Rev. 56, 57–99 (1976).

    Article  CAS  PubMed  Google Scholar 

  109. Doebber, T. W. et al. Enhanced macrophage uptake of synthetically glycosylated human placental β-glucocerebrosidase. J. Biol. Chem. 257, 2193–2199 (1982).

    Article  CAS  PubMed  Google Scholar 

  110. Brady, R. O., Barranger, J. A., Gal, A. E., Pentchev, P. G. & Furbish, F. S. in Enzyme Therapy in Genetic Disease Vol. 2 (ed. Desnick, R. J.) 361–368 (Alan R. Liss, Inc., New York, 1980).

    Google Scholar 

  111. Grabowski, G. A. et al. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med. 122, 33–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Loldish, H. et al. in Molecular Cell Biology 4th edn, 721 (W. H. Freeman & Co., New York, 2000).

    Google Scholar 

Download references

Acknowledgements

The authors thank K. H. Astrin for his assistance with the manuscript. The authors are funded by grants from the National Institutes of Health and a basic research grant from Genzyme Corporation. R.J.D. is a consultant for the Genzyme Corporation and Amicus Therapeutics. E.H.S. is a consultant for the Genzyme Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Desnick.

Related links

Related links

DATABASES

LocusLink

ABCB1

CFTR

α-Gal A

GLA

OMIM

Alzheimer disease

cystic fibrosis

Fabry disease

galactosialidosis

Metachromatic leukodystrophy

Mucopolysaccharidosis type I

Mucopolysaccharidosis type II

Mucopolysaccharidosis type IIIA

Mucopolysaccharidosis type IIIB

Mucopolysaccharidosis type VI

Mucopolysaccharidosis type VII

Pompe disease

Sandhoff disease

Tay–Sachs disease

type I Gaucher disease

type II Gaucher disease

type III Gaucher disease

Type A/B Niemann–Pick

Wolman disease

FURTHER INFORMATION

Biomarin, Inc

European Agency for Evaluation of Medical Products

Genzyme Corporation

March of Dimes Birth Defects Foundation

Transkaryotic Therapies

United States Food and Drug Administration

Glossary

SPHINGOLIPID

A lipid that contains a sphingosine backbone. Fatty acids are often attached to the nitrogen atom of the sphingosine moiety, generating N-acylsphingosines (ceramides).

MUCOPOLYSACCHARIDES

A group of polysaccharides that have characteristic repeating disaccharide units, each consisting of an N-acetylated hexosamine residue and a uronic-acid residue.

GLYCOPROTEIN

Any one of a class of conjugated proteins that consist of a polypeptide backbone linked to a carbohydrate group.

ENDOCYTOSIS

The uptake of extracellular materials by cells. The plasma membrane invaginates and vesicles pinch off that contain endocytosed molecules and plasma membrane components.

PHAGOCYTOSIS

A process by which cells engulf external soluble and particulate material.

CATABOLISM

A metabolic process by which organisms convert substances into simpler molecules.

PANCYTOPAENIA

A deficiency of all types of blood cell.

HEPATOSPLENOMEGALY

Abnormal enlargement of the spleen and liver.

NON-NEUTRALIZING ANTIBODY

Antibodies that do not inactivate the function of a protein.

SEROCONVERT

The changing of a serological test from negative to positive, indicating the development of antibodies in response to infection or immunization.

ORPHAN DRUG

A drug that is used to treat patients with a rare (or 'orphan') disease.

GLYCOSPHINGOLIPID

A sphingolipid that contains sugars. Common classes of these lipids include cerebrosides and gangliosides.

PROTEASOME

The protein complex that is responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

NONSENSE MUTATION

A mutation that results in the introduction of a stop codon to cause the premature termination of the protein.

NONSENSE-MEDIATED MRNA DECAY

(NMD). A pathway ensuring that mRNAs that bear premature stop codons are eliminated as templates for translation.

ACTIVE SITE

The part of an enzyme that is responsible for its catalytic function.

α1-ANTITRYPSIN

A serine protease inhibitor that is produced in the liver and secreted into the plasma, which inhibits the activity of trypsin and elastase. α1-Antitrypsin deficiency is associated with emphysema and liver disease.

OSMOLYTE

A molecule that can alter the ionic concentration of a solution.

P-GLYCOPROTEIN

A protein that is responsible for multiple drug resistance.

GOLGI APPARATUS

A lamellar membranous structure, near the nucleus of most cells, that is the site of protein modification (such as N-glycosylation) and sorting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desnick, R., Schuchman, E. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3, 954–966 (2002). https://doi.org/10.1038/nrg963

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing