Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunopathogenesis of coronavirus infections: implications for SARS

Key Points

  • The severe acute respiratory syndrome (SARS), which was first identified in 2003, is caused by a novel coronavirus: the SARS coronavirus (SARS-CoV).

  • Many features of the infection indicate that an excessive, but perhaps 'normal', immune response contributes to SARS.

  • Several coronaviruses cause diseases that result in considerable morbidity and mortality in animals. Some of these diseases are also immune mediated and provide insights into the pathogenesis of SARS.

  • Feline infectious peritonitis virus (FIPV) causes a fatal, immune-mediated disease of felines. Macrophage infection, lymphocyte depletion and antibody-dependent disease enhancement are hallmarks of this disease.

  • Infection with the murine coronavirus murine hepatitis virus (MHV) strain JHM results in immune-mediated demyelination. Similar to SARS, macrophage activation is a key component in the pathogenic process.

  • Another strain of MHV, MHV-3, causes a fatal, fulminant hepatitis. MHV-3 infection of macrophages, with subsequent activation and induction of expression of a novel procoagulant, fibrinogen-like protein 2 (FGL2), is required for severe disease.

  • Chickens that are infected with avian infectious bronchitis virus (IBV) develop respiratory and renal disease. An excessive innate immune response contributes to the pathogenic process in these animals.

  • To develop effective therapies for SARS will require understanding of the contributions of direct injury by virus and of the host immune response to pathogenesis. This requires further studies of the interactions of SARS-CoV with its target cells and necessitates the development of an animal model that reproduces the pulmonary infection that is observed in infected humans.

Abstract

At the end of 2002, the first cases of severe acute respiratory syndrome (SARS) were reported, and in the following year, SARS resulted in considerable mortality and morbidity worldwide. SARS is caused by a novel species of coronavirus (SARS-CoV) and is the most severe coronavirus-mediated human disease that has been described so far. On the basis of similarities with other coronavirus infections, SARS might, in part, be immune mediated. As discussed in this Review, studies of animals that are infected with other coronaviruses indicate that excessive and sometimes dysregulated responses by macrophages and other pro-inflammatory cells might be particularly important in the pathogenesis of disease that is caused by infection with these viruses. It is hoped that lessons from such studies will help us to understand more about the pathogenesis of SARS in humans and to prevent or control outbreaks of SARS in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The severe-acute-respiratory-syndrome coronavirus genome and virion.
Figure 2: Macrophage infection and antibody-dependent enhancement of virus entry in infection with feline infectious peritonitis virus.
Figure 3: Mechanisms of immune-mediated demyelination in infection with murine hepatitis virus.
Figure 4: Infection with murine hepatitis virus strain 3 results in upregulation of expression of fibrinogen-like protein 2.

Similar content being viewed by others

References

  1. Griffin, D. E. Immune responses during measles virus infection. Curr. Top. Microbiol. Immunol. 191, 117–134 (1995).

    CAS  PubMed  Google Scholar 

  2. Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol. 5, 215–229 (2005).

    Article  CAS  Google Scholar 

  3. Mejias, A., Chavez-Bueno, S. & Ramilo, O. Respiratory syncytial virus pneumonia: mechanisms of inflammation and prolonged airway hyperresponsiveness. Curr. Opin. Infect. Dis. 18, 199–204 (2005).

    Article  PubMed  Google Scholar 

  4. Banerjee, S., Narayanan, K., Mizutani, T. & Makino, S. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. J. Virol. 76, 5937–5948 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menasche, G., Feldmann, J., Fischer, A. & de Saint Basile, G. Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol. Rev. 203, 165–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Parr, R. L. et al. Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J. Virol. 69, 5033–5038 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Peiris, J. S., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nature Med. 10, S88–S97 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Peiris, J. S., Yuen, K. Y., Osterhaus, A. D. & Stohr, K. The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431–2441 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Lai, M. M. C. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Hoek, L. et al. Identification of a new human coronavirus. Nature Med. 10, 368–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Fouchier, R. A. et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl Acad. Sci. USA 101, 6212–6216 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo, P. C. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004). References 13 and 14 trace the evolution of SARS-CoV in human and masked palm-civet populations.

  15. Song, H. D. et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl Acad. Sci. USA 102, 2430–2435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Med. 11, 875–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Imai, Y. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112–116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, R. S. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 326, 1358–1362 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, J. T. et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 10, 818–824 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nicholls, J. M. et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chan, K. H. et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg. Infect. Dis. 10, 294–299 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peiris, J. S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu, J. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202, 415–424 (2005). This is an important histopathological study that indicates that SARS-CoV infection of lymphocytes is a crucial determinant of disease outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farcas, G. A. et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J. Infect. Dis. 191, 193–197 (2005).

    Article  PubMed  Google Scholar 

  27. Mazzulli, T. et al. Severe acute respiratory syndrome-associated coronavirus in lung tissue. Emerg. Infect. Dis. 10, 20–24 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamontagne, L., Descoteaux, J. P. & Jolicoeur, P. Mouse hepatitis virus 3 replication in T and B lymphocytes correlate with viral pathogenicity. J. Immunol. 142, 4458–4465 (1989).

    CAS  PubMed  Google Scholar 

  29. Franks, T. J. et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 34, 743–748 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheung, C. Y. et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 79, 7819–7826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yilla, M. et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 107, 93–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Tseng, C. T., Perrone, L. A., Zhu, H., Makino, S. & Peters, C. J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol. 174, 7977–7985 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Spiegel, M. et al. Inhibition of β interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79, 2079–2086 (2005). This was the first description of the mechanism of type I IFN suppression of a coronavirus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Law, H. K. et al. Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells. Blood 106, 2366–2374 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Wong, C. K. et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136, 95–103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, W. K. et al. Temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 39, 1071–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y. et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 72, 4410–4415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsui, P. T., Kwok, M. L., Yuen, H. & Lai, S. T. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg. Infect. Dis. 9, 1064–1069 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee, C. H. et al. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with severe acute respiratory syndrome. J. Immunol. 172, 7841–7847 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. de Groot, R. J. & Horzinek, M. C. in The Coronaviridae (ed. Siddell, S.) 293–315 (Plenum, New York, 1995).

    Book  Google Scholar 

  41. Stoddart, C. A. & Scott, F. W. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J. Virol. 63, 436–440 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Groot-Mijnes, J. D., van Dun, J. M., van der Most, R. G. & de Groot, R. J. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J. Virol. 79, 1036–1044 (2005). This is a careful study of the clinical and immunological characteristics of FIP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoskins, J. D. Coronavirus infection in cats. Vet. Clin. North Am. Small Anim. Pract. 23, 1–16 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tresnan, D. B., Levis, R. & Holmes, K. V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70, 8669–8674 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dean, G. A., Olivry, T., Stanton, C. & Pedersen, N. C. In vivo cytokine response to experimental feline infectious peritonitis virus infection. Vet. Microbiol. 97, 1–12 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haagmans, B., Egberink, H. & Horzinek, M. Apoptosis and T-cell depletion during feline infectious peritonitis. J. Virol. 70, 8977–8983 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kipar, A. et al. Histopathological alterations of lymphatic tissues in cats without feline infectious peritonitis after long-term exposure to FIP virus. Vet. Microbiol. 69, 131–137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Kiss, I., Poland, A. M. & Pedersen, N. C. Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8. J. Feline Med. Surg. 6, 89–97 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kipar, A., Kohler, K., Leukert, W. & Reinacher, M. A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J. Comp. Pathol. 125, 182–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Paltrinieri, S., Cammarata, M. P., Cammarata, G. & Comazzi, S. Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis. Vet. Immunol. Immunopathol. 65, 205–220 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kipar, A., Bellmann, S., Kremendahl, J., Kohler, K. & Reinacher, M. Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis. Vet. Immunol. Immunopathol. 65, 243–257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacobse-Geels, H. E., Daha, M. R. & Horzinek, M. C. Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. Am. J. Vet. Res. 43, 666–670 (1982).

    CAS  PubMed  Google Scholar 

  54. Weiss, R. C. & Scott, F. W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 4, 175–189 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vennema, H. et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 64, 1407–1409 (1990). This work clearly shows that immunization with vaccinia virus expressing FIPV spike protein results in more severe disease after infection with FIPV.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lavi, E., Gilden, D., Wroblewska, Z., Rorke, L. & Weiss, S. Experimental demyelination produced by the A59 strain of MHV. Neurology 34, 597–603 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Lampert, P. W., Sims, J. K. & Kniazeff, A. J. Mechanism of demyelination in JHM virus encephalomyelitis. Acta Neuropathol. 24, 76–85 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiner, L. P. Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus). Arch. Neurol. 28, 298–303 (1973).

    Article  CAS  PubMed  Google Scholar 

  59. Stohlman, S. A., Bergmann, C. C. & Perlman, S. in Persistent Viral Infections (eds Ahmed, R. & Chen, I.) 537–557 (Wiley & Sons, New York, 1998).

    Google Scholar 

  60. Perlman, S. Pathogenesis of coronavirus-induced infections: review of pathological and immunological aspects. Adv. Exp. Med. Biol. 440, 503–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Bergmann, C. C. et al. Perforin and γ interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells. J. Virol. 78, 1739–1750 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, G. F. & Perlman, S. Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus. J. Virol. 73, 8771–8780 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, F., Stohlman, S. A. & Fleming, J. O. Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J. Neuroimmunol. 30, 31–41 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Houtman, J. J. & Fleming, J. O. Dissociation of demyelination and viral clearance in congenitally immunodeficient mice infected with murine coronavirus JHM. J. Neurovirol. 2, 101–110 (1996). References 61–64, together with reference 72, show that MHV-JHM-induced demyelination is mainly immune mediated.

    Article  CAS  PubMed  Google Scholar 

  65. Lin, M. T., Hinton, D. R., Marten, N. W., Bergmann, C. C. & Stohlman, S. A. Antibody prevents virus reactivation within the central nervous system. J. Immunol. 162, 7358–7368 (1999).

    CAS  PubMed  Google Scholar 

  66. Lin, M. T., Stohlman, S. A. & Hinton, D. R. Mouse hepatitis virus is cleared from the central nervous systems of mice lacking perforin-mediated cytolysis. J. Virol. 71, 383–391 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parra, B. et al. IFN-γ is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 162, 1641–1647 (1999).

    CAS  PubMed  Google Scholar 

  68. Fleming, J. O., Trousdale, M. D., El-Zaatari, F., Stohlman, S. A. & Weiner, L. P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 58, 869–875 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Watanabe, R., Wege, H. & ter Meulen, V. Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature 305, 150–153 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stohlman, S. A. & Hinton, D. R. Viral induced demyelination. Brain Pathol. 11, 92–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, F.-I., Hinton, D., Gilmore, W., Trousdale, M. & Fleming, J. O. Sequential infection of glial cells by the murine hepatitis virus JHM strain (MHV-4) leads to a characteristic distribution of demyelination. Lab. Invest. 66, 744–754 (1992).

    CAS  PubMed  Google Scholar 

  72. Wu, G. F., Dandekar, A. A., Pewe, L. & Perlman, S. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 165, 2278–2286 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Gombold, J., Sutherland, R., Lavi, E., Paterson, Y. & Weiss, S. R. Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8+ T cells. Microb. Pathog. 18, 211–221 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haring, J. S., Pewe, L. L. & Perlman, S. Bystander CD8 T cell-mediated demyelination after viral infection of the central nervous system. J. Immunol. 169, 1550–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, T. S. & Perlman, S. Virus-specific antibody, in the absence of T cells, mediates demyelination in mice infected with a neurotropic coronavirus. Am. J. Pathol. 166, 801–809 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, T. S. & Perlman, S. Viral expression of CCL2 is sufficient to induce demyelination in RAG1−/− mice infected with a neurotropic coronavirus. J. Virol. 79, 7113–7120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pewe, L. L. & Perlman, S. CD8 T cell-mediated demyelination is IFN-γ dependent in mice infected with a neurotropic coronavirus. J. Immunol. 168, 1547–1551 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Pewe, L., Haring, J. & Perlman, S. CD4 T-cell-mediated demyelination is increased in the absence of γ interferon in mice infected with mouse hepatitis virus. J. Virol. 76, 7329–7333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, B. P., Kuziel, W. A. & Lane, T. E. Lack of CCR2 results in increased mortality and impaired leukocyte activation and trafficking following infection of the central nervous system with a neurotropic coronavirus. J. Immunol. 167, 4585–4592 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Glass, W. G. et al. Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J. Immunol. 172, 4018–4025 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, M. T., Armstrong, D., Hamilton, T. A. & Lane, T. E. Expression of MIG (monokine induced by interferon-γ) is important in T lymphocyte recruitment and host defense following viral infection of the central nervous system. J. Immunol. 166, 1790–1795 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, M. T. et al. The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J. Immunol. 165, 2327–2330 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Knobler, R. L., Tunison, L. A. & Oldstone, M. B. Host genetic control of mouse hepatitis virus type 4 (JHM strain) replication. I. Restriction of virus amplification and spread in macrophages from resistant mice. J. Gen. Virol. 65, 1543–1548 (1984).

    Article  PubMed  Google Scholar 

  84. Xue, S., Sun, N., van Rooijen, N. & Perlman, S. Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus. J. Virol. 73, 6327–6334 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yuwaraj, S., Cattral, M., Pope, M. & Levy, G. Murine hepatitis virus: molecular biology and pathogenesis. Viral Hep. Rev. 2, 125–142 (1996).

    Google Scholar 

  86. Coutelier, J. P. et al. B lymphocyte and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus. Eur. J. Immunol. 24, 1383–1390 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pope, M. et al. Pattern of disease after murine hepatitis virus strain 3 infection correlates with macrophage activation and not viral replication. J. Virol. 69, 5252–5260 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ding, J. W. et al. Fulminant hepatic failure in murine hepatitis virus strain 3 infection: tissue-specific expression of a novel fgl2 prothrombinase. J. Virol. 71, 9223–9230 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Marsden, P. A. et al. The Fgl2/fibroleukin prothrombinase contributes to immunologically mediated thrombosis in experimental and human viral hepatitis. J. Clin. Invest. 112, 58–66 (2003). This work uses FGL2-deficient mice to show the crucial role of this prothrombinase in liver necrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McGilvray, I. D. et al. Murine hepatitis virus strain 3 induces the macrophage prothrombinase fgl-2 through p38 mitogen-activated protein kinase activation. J. Biol. Chem. 273, 32222–32229 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Ning, Q. et al. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4α. J. Biol. Chem. 278, 15541–15549 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Raj, G. D. & Jones, R. C. Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol. 26, 677–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Cavanagh, D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32, 567–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hendley, J. O. The host response, not the virus, causes the symptoms of the common cold. Clin. Infect. Dis. 26, 847–848 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Raj, G. D., Savage, C. E. & Jones, R. C. Effect of heterophil depletion by 5-fluorouracil on infectious bronchitis virus infection in chickens. Avian Pathol. 26, 427–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, B. Y., Hosi, S., Nunoya, T. & Otakura, C. Histopathology and immunochemistry of renal lesions due to infectious bronchitis virus in chickens. Avian Pathol. 25, 269–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, C., Brown, C., Hilt, D. A. & Jackwood, M. W. Nephropathogenesis of chickens experimentally infected with various strains of infectious bronchitis virus. Avian Pathol. 66, 835–840 (2004).

    Google Scholar 

  98. Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, Z. Y. et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl Acad. Sci. USA 102, 797–801 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martina, B. E. et al. SARS virus infection of cats and ferrets. Nature 425, 915 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Glass, W. G., Subbarao, K., Murphy, B. & Murphy, P. M. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol. 173, 4030–4039 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Roberts, A. et al. Severe acute respiratory syndrome coronavirus infection of Golden Syrian hamsters. J. Virol. 79, 503–511 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fouchier, R. A. et al. Koch's postulates fulfilled for SARS virus. Nature 423, 240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weingartl, H. et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672–12676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McAuliffe, J. et al. Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330, 8–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Rowe, T. et al. Macaque model for severe acute respiratory syndrome. J. Virol. 78, 11401–11404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuiken, T. et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lassnig, C. et al. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc. Natl Acad. Sci. USA 102, 8275–8280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, W. et al. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol. 78, 11429–11433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dandekar, A. A., Anghelina, D. & Perlman, S. Bystander CD8 T-cell-mediated demyelination is interferon-γ-dependent in a coronavirus model of multiple sclerosis. Am. J. Pathol. 164, 363–369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goitsuka, R. et al. IL-6 activity in feline infectious peritonitis. J. Immunol. 144, 2599–2603 (1990).

    CAS  PubMed  Google Scholar 

  113. Foley, J. E., Rand, C. & Leutenegger, C. Inflammation and changes in cytokine levels in neurological feline infectious peritonitis. J. Feline Med. Surg. 5, 313–322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Garlinghouse, L. E. Jr, Smith, A. L. & Holford, T. The biological relationship of mouse hepatitis virus (MHV) strains and interferon: in vitro induction and sensitivities. Arch. Virol. 82, 19–29 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pewe, L. et al. A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus. J. Virol. 79, 11335–11342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Harty, T. Gallagher, S. Varga and N. Butler for comments. This work was supported by the National Institutes of Health (United States) and the National Multiple Sclerosis Society (United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Perlman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ACE2

CCL2

CD66

CXCL8

CXCL10

FGL2

IL-6

IRF3

p38MAPK

spike

Infectious diseases information

SARS

FURTHER INFORMATION

Stanley Perlman's homepage

Glossary

HAEMOPHAGOCYTOSIS

The phagocytosis of erythrocytes that results from excessive activation of macrophages. This is usually a consequence of uncontrolled activation and proliferation of T cells.

MOLECULAR MIMICRY

A mechanism for the induction of autoimmunity in which a pathogen expresses a protein or peptide that is similar to a self-protein. After the induction of a pathogen-specific immune response, a crossreactive response to self results in autoimmune pathology.

EPITOPE SPREADING

The de novo activation of autoreactive T cells by self-antigens that have been released after virus-specific T- or B-cell-mediated bystander damage.

ENZOOTIC VIRUS

A virus that infects animals and is endemic to a geographical locale, with only minimal changes in its incidence over time.

ABORTIVE INFECTION

An infection in which viral replication is initiated but no infectious virus is produced.

SEROSITIS

Inflammation of the membranes that line the lungs (the pleura), the heart (the pericardium), and the abdomen (the peritoneum) and the organs within.

PYOGRANULOMATOUS VASCULITIS

A type of vasculitis (that is, inflammation of the blood vessels) that is associated with a chronic inflammatory process in which neutrophils are mixed with components of granulomas.

ASCITIC FLUID

Serous fluid that accumulates in the abdominal cavity. It might result from serositis.

GRANULOMA

A collection of modified macrophages that resemble epithelial cells. This is usually surrounded by a layer of lymphocytes that often includes multinucleated giant cells. Granuloma formation is a chronic inflammatory response that is initiated by various infectious and non-infectious agents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandekar, A., Perlman, S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 5, 917–927 (2005). https://doi.org/10.1038/nri1732

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri1732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing