Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Integrating epitope data into the emerging web of biomedical knowledge resources

Abstract

The recognition of immune epitopes is an important molecular mechanism of the vertebrate immune system to discriminate between self and non-self. Increasing amounts of data on immune epitopes are becoming available due to technological advances in epitope-mapping techniques and the availability of genomic information for pathogens. Organizing this data poses a challenge that is similar to the successful effort that was required to organize genomic data, which needed the establishment of centralized databases that complement the primary literature to make the data readily accessible and searchable by researchers. As described in this Innovation article, the Immune Epitope Database and Analysis Resource aims to achieve the same for the more complex and context-dependent information on immune epitopes, and to integrate this data with existing and emerging knowledge resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generating a formal ontology for the Immune Epitope Database (IEDB).
Figure 2: Querying and reporting epitope information.
Figure 3: Homology mapping of an epitope into its three-dimensional source protein structure.
Figure 4: Distribution of influenza A virus epitope data.

Similar content being viewed by others

References

  1. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219. (1999).

    Article  CAS  Google Scholar 

  2. Giudicelli, V. et al. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 34, D781–D784 (2006).

    Article  CAS  Google Scholar 

  3. Toseland, C. P. et al. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005).

    Article  Google Scholar 

  4. Schonbach, C., Koh, J. L., Flower, D. R. & Brusic, V. An update on the functional molecular immunology (FIMM) database. Appl. Bioinformatics 4, 25–31 (2005).

    Article  CAS  Google Scholar 

  5. Bhasin, M., Singh, H. & Raghava, G. P. MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 665–666 (2003).

    Article  CAS  Google Scholar 

  6. Sathiamurthy, M. et al. Population of the HLA ligand database. Tissue Antigens 61, 12–19 (2003).

    Article  CAS  Google Scholar 

  7. HIV Molecular Immunology 2005 (eds Bette T. M. et al.) LA-UR 06–0036 (Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, 2005).

  8. Yusim, K. et al. Los Alamos hepatitis C immunology database. Appl. Bioinformatics 4, 217–225 (2005).

    Article  CAS  Google Scholar 

  9. Peters, B. et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 3, e91 (2005).

    Article  Google Scholar 

  10. Peters, B. et al. The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57, 326–336 (2005).

    Article  CAS  Google Scholar 

  11. Korber, B., LaBute, M. & Yusim, K. Immunoinformatics comes of age. PLoS Comput. Biol. 2, e71 (2006).

    Article  Google Scholar 

  12. Braga-Neto, U. M. & Marques, E. T. Jr. From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput. Biol. 2, e81 (2006).

    Article  Google Scholar 

  13. NIAID Category A, B and C Priority Pathogens. [online], http://www3.niaid.nih.gov/Biodefense/PDF/cat.pdf, (2007).

  14. Vita, R. et al. Curation of complex, context-dependent immunological data. BMC Bioinformatics 7, 341 (2006).

    Article  Google Scholar 

  15. Rubin, D. L. et al. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. Omics 10, 185–198 (2006).

    Article  CAS  Google Scholar 

  16. Lefranc, M. P. et al. IMGT-ONTOLOGY for immunogenetics and immunoinformatics. In Silico Biol. 4, 17–29 (2004).

    CAS  PubMed  Google Scholar 

  17. Sathiamurthy, M. et al. An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res. 1, 2 (2005).

    Article  Google Scholar 

  18. Whetzel, P. L. et al. Development of FuGO: an ontology for functional genomics investigations. Omics 10, 199–204 (2006).

    Article  CAS  Google Scholar 

  19. Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article  CAS  Google Scholar 

  20. Diehl, A. D., Lee, J. A., Scheuermann, R. H. & Blake, J. A. Ontology development for biological systems: Immunology. Bioinformatics 31 January 2007 (doi: 10.1093/bioinformatics/btm029).

    Article  CAS  Google Scholar 

  21. Cohen, A. M. & Hersh, W. R. A survey of current work in biomedical text mining. Brief Bioinform. 6, 57–71 (2005).

    Article  CAS  Google Scholar 

  22. Jensen, L. J., Saric, J. & Bork, P. Literature mining for the biologist: from information retrieval to biological discovery. Nature Rev. Genet. 7, 119–129 (2006).

    Article  CAS  Google Scholar 

  23. Miotto, O., Tan, T. W. & Brusic, V. Supporting the curation of biological databases with reusable text mining. Genome Inform. 16, 32–44 (2005).

    CAS  PubMed  Google Scholar 

  24. Donaldson, I. et al. PreBIND and Textomy—mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics 4, 11 (2003).

    Article  Google Scholar 

  25. Yeh, A. S., Hirschman, L. & Morgan, A. A. Evaluation of text data mining for database curation: lessons learned from the KDD Challenge Cup. Bioinformatics 19 (Suppl. 1), 331–339 (2003).

    Article  Google Scholar 

  26. De Groot, A. S. Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov. Today 11, 203–209 (2006).

    Article  CAS  Google Scholar 

  27. Peters, B. et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2, e65 (2006).

    Article  Google Scholar 

  28. Moult, J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15, 285–289 (2005).

    Article  CAS  Google Scholar 

  29. Blythe, M. J. & Flower, D. R. Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 14, 246–248 (2005).

    Article  CAS  Google Scholar 

  30. Greenbaum, J. A. et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit. 20, 75–82 (2007).

    Article  CAS  Google Scholar 

  31. Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7, 153 (2006).

    Article  Google Scholar 

  32. Beaver, J. E., Bourne, P. E. & Ponomarenko, J. V. EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB). Immunome Res. 3, 3 (2007).

    Article  Google Scholar 

  33. Bui, H. H., Peters, B., Assarsson, E., Mbawuike, I. & Sette, A. Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl Acad. Sci. USA 104, 246–251 (2007).

    Article  CAS  Google Scholar 

  34. He, Y. et al. Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 5309–5314 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ponomarenko and P. Bourne at the San Diego Supercomputer Center, who developed the Homology Mapping tool. This work was supported by the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Alessandro Sette's homepage

AntiJen

ΦIMM

Gene Ontology

HCV databases

HIV databases

IEDB

IMGT

La Jolla Institute for Allergy and Immunology

MHCBN

NIAID Biodefense Research

Ontology for Biomedical Investigations

SYFPEITHI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, B., Sette, A. Integrating epitope data into the emerging web of biomedical knowledge resources. Nat Rev Immunol 7, 485–490 (2007). https://doi.org/10.1038/nri2092

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing