Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections

Key Points

  • A decline in T-cell immunity is one of the most consistent and most profound deficiencies of the elderly. Therapeutic correction of this decline often restores immune responsiveness and immune defence.

  • T-cell immune decline in the elderly has at least two underpinnings: a drop in the responsiveness of naive T cells to stimulation (cell-autonomous defects) and a reduction in naive T-cell numbers and diversity that leads to a dominant memory T-cell pool (T-cell population imbalance).

  • This article discusses two key causes of age-related T-cell population imbalance: homeostatic cycling or proliferative expansion in the peripheral T-cell pool, and latent persistent infections, which repeatedly stimulate the T-cell pool over the lifetime of the individual.

  • The reduction in production of naive T cells by the thymus forces the ageing organism to rely on compensatory homeostatic mechanisms to maintain the balance between naive and memory T-cell pools. Although this may be initially successful, recent evidence suggests that late in life these mechanisms exhaust their usefulness and actually contribute to a further demise of the remaining naive T cells.

  • Latent persistent infections, particularly with herpesviruses, lead to life-long periodic restimulation of the immune system, here, evidence is presented for the role of viral reactivation in this restimulation using a mouse model of herpesvirus infection and ageing.

  • Relative roles and the interplay between the homeostatic and viral factors are discussed, with the former having a surprisingly prominent role. Finally, modes of immune rejuvenation and anti-ageing intervention are debated in light of these advances in our knowledge.

Abstract

A diverse and well-balanced repertoire of T cells is thought to be crucial for the efficacious defence against infection with new or re-emerging pathogens throughout life. In the last third of the mammalian lifespan, the maintenance of a balanced T-cell repertoire becomes highly challenging because of the changes in T-cell production and consumption. In this Review, I question whether latent persistent pathogens might be key factors that drive this imbalance and whether they determine the extent of age-associated immune deficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-cell homeostasis.
Figure 2: Cellular and population-based changes in T-cell senescence.
Figure 3: Disruption of T-cell homeostasis with ageing: possible causes.
Figure 4: Adding insult to injury: the impact of persistent pathogens on T-cell population dynamics with age.
Figure 5: Persistent viruses and their antigenic load over time.

Similar content being viewed by others

References

  1. Miller, R. A. The aging immune system: primer and prospectus. Science 273, 70–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol. 5, 133–139 (2004).

    Article  CAS  Google Scholar 

  3. Cambier, J. Immunosenescence: a problem of lymphopoiesis, homeostasis, microenvironment, and signaling. Immunol. Rev. 205, 5–6 (2005).

    Article  PubMed  Google Scholar 

  4. Brody, J. A. & Brock, D. B. Epidemiologic and statistical characteristics of the United States elderly population, in Handbook of the Biology of Aging Vol. 185 (eds Finch, C. E. & Schneider, E. L.) 3–42 (Van Nostrand Reihnold Co., New York, 1985).

    Google Scholar 

  5. Robinson, K. A. et al. Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA 285, 1729–1735 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Gardner, I. D. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17, 480–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Haynes, L., Eaton, S. M., Burns, E. M., Randall, T. D. & Swain, S. L. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc. Natl Acad. Sci. USA 100, 15053–15058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia, G. G. & Miller, R. A. Single-cell analyses reveal two defects in peptide-specific activation of naive T cells from aged mice. J. Immunol. 166, 3151–3157 (2001). This work demonstrates at a single-cell level the existence of age-related proximal defects in T-cell signalling.

    Article  CAS  PubMed  Google Scholar 

  10. Haynes, L., Linton, P. J., Eaton, S. M., Tonkonogy, S. L. & Swain, S. L. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J. Exp. Med. 190, 1013–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ershler, W. B., Sun, W. H. & Binkley, N. The role of interleukin-6 in certain age-related diseases. Drugs Aging 5, 358–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Ginaldi, L. et al. The immune system in the elderly: II. Specific cellular immunity. Immunol. Res. 20, 109–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Haynes, L., Eaton, S. M. & Swain, S. L. The defects in effector generation associated with aging can be reversed by addition of IL-2 but not other related γc-receptor binding cytokines. Vaccine 18, 1649–1653 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Pamer, E. G. Antigen presentation in the immune response to infectious diseases. Clin. Infect. Dis. 28, 714–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Woodland, D. L. & Blackman, M. A. Immunity and age: living in the past? Trends Immunol. 27, 303–307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guney, I. & Sedivy, J. M. Cellular senescence, epigenetic switches and c-Myc. Cell Cycle 5, 2319–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bird, J., Ostler, E. L. & Faragher, R. G. Can we say that senescent cells cause ageing? Exp. Gerontol. 38, 1319–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Gavrilov, L. A. & Gavrilova, N. S. Evolutionary theories of aging and longevity. Scientific WorldJournal 2, 339–356 (2002).

    Article  Google Scholar 

  20. Hekimi, S. & Guarente, L. Genetics and the specificity of the aging process. Science 299, 1351–1354 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Masoro, E. J. Physiology of aging. Int. J. Sport Nutr. Exerc. Metab. 11, S218–S222 (2001).

    Article  PubMed  Google Scholar 

  22. Campisi, J. Between scylla and charybdis: p53 links tumor suppression and aging. Mech. Ageing Dev. 123, 567–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Surh, C. D. & Sprent, J. Regulation of naive and memory T-cell homeostasis. Microbes Infect. 4, 51–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Fry, T. J. & Mackall, C. L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Pawelec, G. et al. Is immunosenescence infectious? Trends Immunol. 25, 406–410 (2004). This opinion piece lists the contemporary evidence and makes the case for the role of latent viral infections in ageing of the immune system.

    Article  CAS  PubMed  Google Scholar 

  26. Zúñiga-Pflücker, J. C. & van den Brink, M. R. Giving T cells a chance to come back. Semin. Immunol. 19, 279 (2007).

    Article  Google Scholar 

  27. Scollay, R., Butcher, E. & Weissman, I. Thymus migration: quantitative studies on the rate of migration of cells from the thymus to the periphery in mice. Eur. J. Immunol. 10, 210 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Hale, J. S., Boursalian, T. E., Turk, G. L. & Fink, P. J. Thymic output in aged mice. Proc. Natl Acad. Sci. USA 103, 8447–8452 (2006). An elegant insight into the decrease of thymic function with ageing in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berzins, S. P., Boyd, R. L. & Miller, J. F. A. P. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malek, T. R. & Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nature Rev. Immunol. 4, 665–674 (2004).

    Article  CAS  Google Scholar 

  31. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Caserta, S. & Zamoyska, R. Memories are made of this: synergy of T cell receptor and cytokine signals in CD4+ central memory cell survival. Trends Immunol. 28, 245–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Tan, J. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Callahan, J. E., Kappler, J. W. & Marrack, P. Unexpected expansions of CD8-bearing cells in old mice. J. Immunol. 151, 6657–6669 (1993). This study provides the first description of age-related T-cell clonal expansions.

    CAS  PubMed  Google Scholar 

  35. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the fight for survival. Annu. Rev. Immunol. 18, 83–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Berzins, S. P., Godfrey, D. I., Miller, J. F. A. P. & Boyd, R. L. A central role for thymic emigrants in peripheral T cell homeostasis. Proc. Natl Acad. Sci. USA 96, 9787–9791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nature Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  Google Scholar 

  38. Nikolich-Žugich, J. T cell aging: naive but not young. J. Exp. Med. 201, 837–840 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haynes, L., Eaton, S. M., Burns, E. M., Rincon, M. & Swain, S. L. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J. Immunol. 172, 5194–5199 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Haynes, L., Eaton, S. M., Buns, E. M., Randall, T. D. & Swain, S. L. Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. J. Exp. Med. 201, 845–851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Effros, R. B., Walford, R. L., Weindruch, R. & Mitcheltree, C. Influences of dietary restriction on immunity to influenza in aged mice. J. Gerontol. 46, B142–B147 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, R. A., Garcia, G., Kirk, C. J. & Witkowski, J. M. Early activation defects in T lymphocytes from aged mice. Immunol. Rev. 160, 79–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Miller, R. A. et al. T cells in aging mice: genetic, developmental, and biochemical analyses. Immunol. Rev. 205, 94–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Montecino-Rodriquez, E., Min., H. & Dorshkind, K. Reevaluating current models of thymic involution. Semin. Immunol. 17, 356–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Zediak, V. P. & Bhandoola, A. Aging and T cell development: interplay between progenitors and their environment. Semin. Immunol. 17, 337–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Gruver, A. L., Hudson, L. L. & Sempowski, G. D. Immunosenescence of ageing. J. Pathol. 211, 144–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol. 4, 168–174 (2003).

    Article  CAS  Google Scholar 

  48. Martin, C. H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nature Immunol. 4, 866–873 (2003).

    Article  CAS  Google Scholar 

  49. Miller, J. P. & Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326–2330 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Utsuyama, M., Kasai, M., Kurashima, C. & Hirokawa, K. Age influence on the thymic capacity to promote differentiation of T cells: induction of different composition of T cell subsets by aging thymus. Mech. Ageing Dev. 58, 267–277 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Chidgey, A. P. & Boyd, R. L. Stemming the tide of thymic aging. Nature Immunol. 7, 1013–1016 (2006).

    Article  CAS  Google Scholar 

  53. Heng, T. S. et al. Effects of castration on thymocyte development in two different models of thymic involution. J. Immunol. 175, 2982–2993 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Picker, L. J. et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J. Clin. Invest. 116, 1514–1524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fry, T. J. et al. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 101, 2294–2299 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Tanchot, C., Lemonnier, F. A., Pérarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hamilton, S. E., Wolkers, M. C., Schoenberger, S. P. & Jameson, S. C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nature Immunol. 7, 475–481 (2006).

    Article  CAS  Google Scholar 

  58. Ge, Q., Hu, H., Eisen, H. N. & Chen, J. Naive to memory T-cell differentiation during homeostasis-driven proliferation. Microbes Infect. 4, 555–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Surh, C. D., Boyman, O., Purton, J. F. & Sprent, J. Homeostasis of memory T cells. Immunol. Rev. 211, 154–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Cicin-Sain, L. et al. Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc. Natl Acad. Sci. USA 104, 19960–19965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Naylor, K. et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452 (2005). References 61 and 62 provide essential evidence for increased turnover and concomitant loss of naive T cells in ageing primates and humans, respectively.

    Article  CAS  PubMed  Google Scholar 

  63. Posnett, D. N., Sinha, S., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med. 179, 609–617 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. LeMaoult, J. et al. Age-related dysregulation in CD8 T cell homeostasis: kinetics of a diversity loss. J. Immunol. 165, 2367–2373 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Miller, R. A. & Stutman, O. Limiting dilution analysis of IL-2 production: studies of age, genotype, and regulatory interactions. Lymphokine Res. 1, 79–86 (1982).

    CAS  PubMed  Google Scholar 

  66. Effros, R. B. & Walford, R. L. The immune response of aged mice to influenza: diminished T-cell proliferation, interleukin 2 production and cytotoxicity. Cell. Immunol. 81, 298–305 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Thoman, M. L. & Weigle, W. O. Lymphokines and aging: interleukin-2 production and activity in aged animals. J. Immunol. 127, 2102–2106 (1981).

    CAS  PubMed  Google Scholar 

  68. Andrew, D. & Aspinall, R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp. Gerontol. 37, 455–463 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, H. R., Hong, M. S., Dan, J. M. & Kang, I. Altered IL-7Rα expression with aging and the potential implications of IL-7 therapy on CD8+ T cell immune responses. Blood 107, 2855–2862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. El Kassar, N. et al. A dose effect of IL-7 on thymocyte development. Blood 104, 1419–1427 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Messaoudi, I., Warner, J. & Nikolich-Žugich, J. Age-related CD8+ T cell clonal expansions express elevated levels of CD122 and CD127 and display defects in perceiving homeostatic signals. J. Immunol. 177, 2784–2792 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Moniuszko, M. et al. Recombinant interleukin-7 induces proliferation of naive macaque CD4+ and CD8+ T cells in vivo. J. Virol. 78, 9740–9749 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phillips, J. A. et al. IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J. Immunol. 173, 4867–4874 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Nikolich-Žugich, J. Non-human primate models of T-cell reconstitution. Semin. Immunol. 19, 310–317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas, J. & Rouse, B. T. Immunopathogenesis of herpetic ocular disease. Immunol. Res. 16, 375–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Almanzar, G. et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8 T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J. Virol. 79, 3675–3683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olsson, J. et al. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 121, 187–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Mocarski, E. S. & Courcelle, C. T. Cytomegaloviruses and their replication, in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) 2629–2674 (Lippincot Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  79. Murphy, B. L., Maynard, J. E., Krushak, D. H. & Fields, R. M. Occurrence of a carrier state for Herpesvirus tamarinus in Marmosets. Appl. Microbiol. 21, 50–52 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnson, D. C. & Hill, A. B. Herpesvirus evasion of the immune system. Curr. Top. Microbiol. Immunol. 232, 149–177 (1998).

    CAS  PubMed  Google Scholar 

  81. Stevenson, P. G. Immune evasion by gamma-herpesviruses. Curr. Opin. Immunol. 16, 456–462 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Novak, N. & Peng, W. M. Dancing with the enemy: the interplay of herpes simplex virus with dendritic cells. Clin. Exp. Immunol. 142, 405–410 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pass, R. F. Cytomegalovirus, in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) 2675–2706 (Lippincot Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  84. Sylwester, A. W. et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673–685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Munks, M. W. et al. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J. Immunol. 176, 3760–3766 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Reddehase, M. J. The immunogenicity of human and murine cytomegaloviruses. Curr. Opin. Immunol. 12, 390–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ouyang, Q. et al. Dysfunctional CMV-specific CD8+ T cells accumulate in the elderly. Exp. Gerontol. 39, 607–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Karrer, U. et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170, 2022–2029 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Ouyang, Q. et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J. Clin. Immunol. 23, 247–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Wikby, A. et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J. Gerontol. A Biol. Sci. Med. Sci. 60, 556–565 (2005).

    Article  PubMed  Google Scholar 

  91. Hadrup, S. R. et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 2645–2653 (2006). An outstanding longitudinal study of an ageing Swedish population that suggests a strong impact of CMV on the ageing immune system.

    Article  CAS  PubMed  Google Scholar 

  92. Podlech, J., Holtappels, R., Wirtz, N., Steffens, H. P. & Reddehase, M. J. Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J. Gen. Virol. 79, 2099–2104 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Holtappels, R., Pahl-Seibert, M. F., Thomas, D. & Reddehase, M. J. Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J. Virol. 74, 11495–11503 (2000). This work showed for the first time that accumulation of antigen-specific T cells occurs late after CMV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Holtappels, R., Thomas, D., Podlech, J. & Reddehase, M. J. Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J. Virol. 76, 151–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Holtappels, R. et al. The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J. Virol. 74, 1871–1884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sierro, S., Rothkopf, R. & Klenerman, P. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur. J. Immunol. 35, 1113–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Lang, A. & Nikolich-Žugich, J. Development and migration of protective CD8+ T cells into the nervous system following ocular herpes simplex virus-1 infection. J. Immunol. 174, 2919–2925 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Lang, A., Brien, J. D., Messaoudi, I. & Nikolich-Žugich, J. Age-related dysregulation of CD8+ T-cell memory specific for a persistent virus is independent of viral replication. J. Immunol. 180, 4848–4857 (2008). This study reveals that localized, niche-limited latent herpesvirus may not have an impact on immune senescence.

    Article  CAS  PubMed  Google Scholar 

  99. Messaoudi, I., Warner, J., Nikolich-Žugich, D., Fischer, M. & Nikolich-Žugich, J. Molecular, cellular, and antigen requirements for development of age-associated T cell clonal expansions in vivo. J. Immunol. 176, 301–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ely, K. H. et al. Antigen-specific CD8+ T cell clonal expansions develop from memory T cell pools established by acute respiratory virus infections. J. Immunol. 179, 3535–3542 (2007). This study shows that age-related T-cell clonal expansions can be specific for acute, long-cleared pathogens, suggesting that homeostatic disturbances have an important role in the onset of these abnormalities.

    Article  CAS  PubMed  Google Scholar 

  101. Komatsu, H. et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun. Ageing 3, 11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Komatsu, H. et al. Bone marrow transplantation from a pediatric donor with a high frequency of cytomegalovirus-specific T-cells. J. Med. Virol. 78, 1616–1623 (2006).

    Article  PubMed  Google Scholar 

  103. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Riley, J. L. & June, C. H. The road to recovery: translating PD-1 biology into clinical benefit. Trends Immunol. 28, 48–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nature Med. 12, 1301–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Ouyang, Q. et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp. Gerontol. 38, 911–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Brenchley, J. M. et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Masopust, D., Ha, S. J., Vezys, V. & Ahmed, R. Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J. Immunol. 177, 831–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Casazza, J. P. et al. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med. 203, 2865–2877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Michie, C. A., McLean, A., Alcock, C. & Beverley, P. C. Lifespan of lymphocyte subsets defined by CD45 isoforms. Nature 360, 264–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Maini, M. K., Casorati, G., Dellabona, P., Wack, A. & Beverley, P. C. T-cell clonality in immune responses. Immunol. Today 20, 262–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Beverley, P. C. & Grubek-Loebenstein, B. Is immune senescence reversible? Vaccine 18, 1721–1724 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Globerson, A. & Effros, R. Aging of lymphocytes and lymphocytes in the aged. Immunol. Today 21, 515–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Sauce, D. et al. PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status. AIDS 21, 2005–2013 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Pitcher, C. J. et al. Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 168, 29–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Jankovic, V., Messaoudi, I. & Nikolich-Žugich, J. Phenotypic and functional T-cell aging in rhesus macaques (Macaca mulatta): differential behavior of CD8 and CD4 subsets. Blood 102, 3244–3251 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Dunne, P. J. et al. Epstein–Barr virus-specific CD8+ T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 100, 933–940 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Northfield, J. W. et al. Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T(EMRA) cells in early infection are linked to control of HIV-1 viremia and predict the subsequent viral load set point. J. Virol. 81, 5759–5765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Messaoudi, I., Lemaoult, J., Guevara-Patino, J. A., Metzner, B. M. & Nikolich-Žugich, J. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J. Exp. Med. 200, 1347–1358 (2004). This manuscript shows that constriction of the T-cell repertoire by uncontrolled T-cell clonal expansions can erode protective immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007). An elegant demonstration of beneficial effects of latent herpesvirus infections by crossprotection against unrelated pathogens.

    Article  CAS  PubMed  Google Scholar 

  122. Betts, R. F. & Treanor, J. J. Approaches to improved influenza vaccination. Vaccine 18, 1690–1695 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Wikby, A. et al. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech. Ageing Dev. 127, 695–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Messaoudi, I. et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl Acad. Sci. USA 103, 19448–19453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, J., Astle, C. M. & Harrison, D. E. Delayed immune aging in diet-restricted B6CBAT6 F1 mice is associated with preservation of naive T cells. J. Gerontol. A Biol. Sci. Med. Sci. 53, B330–B337 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the members of my laboratory for stimulating discussions (in particular, L. Cicin-Sain, A. Lang and B. Rudd) and A. Townsend for help with the original illustrations. I also acknowledge support from the US Public Health Service awards AG20719, AG21384, AG23664 and N0150027 from the National Institute on Aging and National Institute of Allergy and Infectious Diseases and RR 0163 (the Core National Primate Research Center award to Oregon National Primate Research Centre) from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Glossary

Oxidative stress

The cellular state in which there is an imbalance between the production and neutralization of reactive oxygen species (ROS), such as H2O2, OH, HOO and superoxide. Excess ROS can generate oxidative reactions that can result in disrupted cellular signalling, injury and death.

Non-homologous end-joining

A pathway that rejoins DNA strand breaks without relying on significant homology. The main known pathway uses the Ku-end binding complex and is regulated by DNA protein kinase. The pathway is often used in mammalian cells to repair strand breaks caused by DNA-damaging agents, and some of the same enzymes are used during the strand-joining steps of V(D)J recombination.

Thymic involution

The age-dependent decrease of thymic epithelial volume and decreased production of T cells.

T-cell homeostasis

The maintenance of relatively stable numbers of naive and memory T cells and of balanced T-cell receptor diversity, as well as the ability of the T-cell pool to restore these numbers and diversity to prior resting state after acute antigen challenge.

Common cytokine-receptor γ-chain family

A family of cytokine receptors in which each receptor complex is composed of two or three subunits, with one of those subunits being the common cytokine-receptor γ-chain (γc).

Regulatory T cells

A subset of CD4+ T cells that has suppressive regulatory activity towards effector T cells and other immune cells. This subset includes cells that express high levels of CD25 (the interleukin-2 receptor α-chain) and the transcription factor forkhead box P3 (FOXP3). Other regulatory T-cell populations can be CD25FOXP3 and produce the regulatory cytokine interleukin-10, which suppresses the functions of T-helper-1-type effector T cells and other immune cells. The absence or dysfunction of regulatory T cells is associated with severe autoimmunity.

Central memory T cells

Antigen-experienced CD8+ T cells that lack immediate effector function but can mediate rapid recall responses by virtue of quick and sustained cell division and rapid development into effector or effector memory cells after restimulation with antigen. Central memory T cells retain the migratory properties of naive cells and therefore circulate through the secondary lymphoid organs.

Effector memory T cells

Terminally differentiated T cells that lack most, but not all, lymph-node homing receptors, but express receptors that enable them to home to inflamed tissues. Effector memory cells contain perforin and can exert immediate effector functions without the need of further differentiation.

Specific pathogen free (SPF) conditions

Vivarium conditions for rodents whereby an increasing number of pathogens are excluded or eradicated from the colony. These animals are maintained in the absence of most of the known chronic and latent persistent pathogens. Although this enables better control of experimental conditions related to immunity and infection, it also sets apart such animal models from pathogen-exposed humans or non-human primates, whose immune systems are in constant contact with infection.

MHC class I tetramers

Biotinylated monomeric MHC molecules that are folded with a specific peptide in the binding groove and tetramerized with a fluorescently labelled streptavidin molecule. These tetramers will bind to T cells that express T-cell receptors specific for the cognate peptide, allowing direct enumeration of antigen-specific T cells.

Clonal exhaustion

A state of non-reactivity in which all precursor lymphocytes responding to persistent antigen(s) differentiate into effector cells which are driven into the state of functional exhaustion, such that they no longer can productively engage and control the pathogen. The end result of clonal exhaustion is purging the immune-response repertoire of a particular specificity (or specificities).

Bromodeoxyuridine

(5-Bromo-2-deoxyuridine; BrdU). A thymidine analogue that is incorporated into DNA on replication, allowing tracking of cells that have divided using BrdU-specific antibodies and flow cytometry.

Immune risk phenotype

A set of empirical immune system (mainly T-cell) measurements that are thought to be biomarkers (although in some circumstances this still needs to be verified) of immune senescence. These include: reduced naive T-cell numbers, inverted CD4:CD8 ratios (>1 in youth, ≥1 in ageing), accumulation of CD28 (effector memory) T cells, reduced proliferative ability, reduced interleukin-2 production and presence of cytomegalovirus infection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolich-Žugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8, 512–522 (2008). https://doi.org/10.1038/nri2318

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing