Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian glycosylation in immunity

This article has been updated

Key Points

  • Various types of mammalian extracellular glycan are produced in the secretory pathway. This Review covers the enzymatic synthesis of glycans and the mechanisms by which cellular glycans are regulated.

  • The basic framework by which glycan structures can control molecular interactions is provided, with examples of glycoprotein conformation, glycoprotein maturation and the binding of glycan receptors known as lectins.

  • The roles of mammalian glycans in the innate and adaptive immune systems are reviewed, as well as examples of glycan-dependent functions in the ontogeny of various immune cell types.

  • This Review encompasses a discussion and tabulation of mammalian glycan linkages, the enzymes that produce them and their cognate recognition molecules that include lectin receptors, in the context of the immune system.

  • The role of mammalian glycosylation in controlling the activation of intracellular phosphorylation and signal-transduction pathways is detailed. We review the molecular mechanisms that explain how the glycosylation of cell-surface molecules can govern the assembly and function of glycoprotein signalling complexes.

  • Important outstanding questions and unexplored areas are discussed in the context of current methodologies and potential future technologies. We discuss examples of how blocking single enzymes in mammalian glycosylation can either elicit or prevent diseases of the immune system.

Abstract

Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The types of mammalian glycan.
Figure 2: Basic mechanisms of glycan function in the immune system.
Figure 3: Glycans in T-cell-receptor activation.
Figure 4: Glycans in B-cell-receptor activation.

Similar content being viewed by others

Change history

  • 15 October 2008

    In the version of this article initially published online, there was an unnecessary "of" in the abstract. This error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Paulson, J. C., Blixt, O. & Collins, B. E. Sweet spots in functional glycomics. Nature Chem. Biol. 2, 238–248 (2006). This publication provides an introduction to the definition and concept of the glycome and describes new approaches to research in this field.

    Article  CAS  Google Scholar 

  2. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006). This article reviews the process of glycosylation and the mechanisms by which glycans contribute to molecular interactions that govern health and disease.

    Article  CAS  PubMed  Google Scholar 

  3. Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C. & Sasisekharan, R. Glycomics: an integrated systems approach to structure–function relationships of glycans. Nature Methods 2, 817–824 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Haltiwanger, R. S. & Lowe, J. B. Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004). This article reviews the developmental biology of glycosylation and the mechanisms by which glycans control ontogeny.

    Article  CAS  PubMed  Google Scholar 

  5. Caramelo, J. J. & Parodi, A. J. How sugars convey information on protein conformation in the endoplasmic reticulum. Semin. Cell Dev. Biol. 18, 732–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varki, A. Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006). This review provides a perspective on how glycan function arose and continues to change in the evolution of organisms.

    Article  CAS  PubMed  Google Scholar 

  7. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lowe, J. B. & Marth, J. D. A genetic approach to mammalian glycan function. Annu. Rev. Biochem. 72, 643–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Comelli, E. M. et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Wu, X. et al. Mutation of the COG complex subunit COG7 causes a lethal congenital disorder. Nature Med. 10, 518–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hart, G. W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 66, 315–335 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Dias, W. B. & Hart, G. W. O-GlcNAc modification in diabetes and Alzheimer's disease. Mol. Biosyst. 3, 766–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Sharon, N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282, 2753–2764 (2007). This publication describes the origins and activities of lectins as proteinaceous receptors that bind glycans.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, M. E. & Drickamer, K. Paradigms for glycan-binding receptors in cell adhesion. Curr. Opin. Cell Biol. 19, 572–577 (2007). This article describes the various lectins and their binding activities in adhesive functions between cells.

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein, I. J. Lectin structure-activity: the story is never over. J. Agric. Food Chem. 50, 6583–6585 (2002). This publication describes the extent of origins and activities of lectins.

    Article  CAS  PubMed  Google Scholar 

  16. Gagneux, P. & Varki, A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Medzhitov, R. & Janeway, J. C. The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. van Kooyk, Y. & Rabinovich, G. A. Protein–glycan interactions in the control of innate and adaptive immune responses. Nature Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  19. Baum, L. G. Developing a taste for sweets. Immunity 16, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lowe, J. B. Glycosylation, immunity, and autoimmunity. Cell 104, 809–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. & Dwek, R. A. Glycosylation and the immune system. Science 291, 2370–2374 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lowe, J. B. Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochem. Soc. Symp. 69, 33–45 (2002).

    Article  CAS  Google Scholar 

  23. Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. McEver, R. P. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66, 80–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Lasky, L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 258, 964–969 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Ley, K. & Kansas, G. S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Rev. Immunol. 4, 325–335 (2004).

    Article  CAS  Google Scholar 

  27. Rossi, F. M. V. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nature Immunol. 6, 626–634 (2005).

    Article  CAS  Google Scholar 

  28. McEver, R. Selectin–carbohydrate interactions during inflammation and metastasis. Glycoconj. J. 14, 585–591 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. McEver, R. P. & Cummings, R. D. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100, S97–S103 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Hidalgo, A., Peired, A. J., Wild, M. K., Vestweber, D. & Frenette, P. S. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26, 477–489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zisoulis, D. G. & Kansas, G. S. H-Ras and phosphoinositide 3-kinase co-operate to induce α(1,3)-fucosyltransferase VII expression in Jurkat T cells. J. Biol. Chem. 279, 39495–39504 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Underhill, G. H. et al. A crucial role for T-bet in selectin ligand expression in T helper 1 (Th1) cells. Blood 106, 3867–3873 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang, R. et al. Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J. Biol. Chem. 271, 26706–26712 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Maly, P. et al. The α(1, 3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Homeister, J. W. et al. The α(1, 3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, P. L. et al. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J. Cell Biol. 158, 801–815 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellies, L. G. et al. Sialyltransferase specificity in selectin ligand formation. Blood 100, 3618–3425 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Sperandio, M. et al. α2,3-sialyltransferase-IV is essential for L-selectin ligand function in inflammation. Eur. J. Immunol. 36, 3207–3215 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Frommhold et al. Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. J. Exp. Med. 205, 1435–1446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ellies, L. G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Sperandio, M. et al. Differential requirements for core2 glucosaminyltransferase for endothelial L-selectin ligand function in vivo. J. Immunol. 167, 2268–2274 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Gauguet, J.-M., Rosen, S. D., Marth, J. D. & von Andrian, U. H. Core 2 branching β1,6-N-acetyl-glucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B- and T-lymphocyte homing to peripheral lymph nodes. Blood 104, 4104–4112 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Yeh, J.-C. et al. Novel sulfated lymphocyte homing receptors and their control by a core1 extension β1, 3-N-acetylglucosaminyltransferase. Cell 105, 957–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Mitoma, J. et al. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nature Immunol. 8, 409–418 (2007).

    Article  CAS  Google Scholar 

  45. Kawashima, H. et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature Immunol. 6, 1096–1164 (2005).

    Article  CAS  Google Scholar 

  46. Uchimura, K. et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nature Immunol. 6, 1105–1113 (2005).

    Article  CAS  Google Scholar 

  47. Hidari, K. I., Weyrich, A. S., Zimmerman, G. A. & McEver, R. P. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J. Biol. Chem. 272, 28750–28756 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Simon, S. I., Hu, Y., Vestweber, D. & Smith, C. W. Neutrophil tethering on E-selectin activates β2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 164, 4348–4358 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Urzainqui, A. et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 17, 401–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Zarbock, A., Lowell, C. A. & Ley, K. Spleen tyrosine kinase Syk is necessary for E-selectin-induced αLβ2 integrin-mediated rolling on intercellular adhesion molecule-1. Immunity 26, 773–783 (2007). This study links selectin binding to signal transduction by tyrosine kinases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, Y. J., Borsig, L., Varki, N. M. & Varki, A. P-selectin deficiency attenuates tumor growth and metastasis. Proc. Natl Acad. Sci. USA 95, 9325–9380 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, S. & Fukuda, M. Cell type-specific roles of carbohydrates in tumor metastasis. Methods Enzymol. 416, 371–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Romano, S. J. Selectin antagonists: therapeutic potential in asthma and COPD. Treat Respir. Med. 4, 85–94 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uchimura, K. & Rosen, S. D. Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends Immunol. 27, 559–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Woollard, K. J. & Chin-Dusting, J. Therapeutic targeting of P-selectin in atherosclerosis. Inflamm. Allergy Drug Targets. 6, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nature Med. 14, 181–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Rapoport, E. M., Kurmyshkina, O. V. & Bovin, N. V. Mammalian galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc) 73, 393–405 (2008).

    Article  CAS  Google Scholar 

  58. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, S.-U. et al. N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J. Biol. Chem. 282, 33725–33734 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Demotte, N. et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28, 414–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, S. D. et al. Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood 112, 120–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grigorian, A. et al. Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J. Biol. Chem. 282, 20027–20035 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nature Rev. Immunol. 7, 255–266 (2007). This review covers the structure and activities of the Siglec family of lectins and their immunological functions.

    Article  CAS  Google Scholar 

  64. Tedder, T. F., Tuscano, J., Sato, S. & Kehrl, J. H. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu. Rev. Immunol. 15, 481–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hennet, T., Chui, D., Paulson, J. C. & Marth, J. D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, S., Collins, B. E., Bengtson, P. & Paulson, J. C. Homo-multimeric complexes of CD22 in B cells revealed by protein–glycan cross-linking. Nature Chem. Biol. 1, 93–97 (2005).

    Article  CAS  Google Scholar 

  67. Collins, B. E., Smith, B. A., Bengtson, P. & Paulson, J. C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nature Immunol. 7, 199–206 (2006).

    Article  CAS  Google Scholar 

  68. Grewal, P. K. et al. ST6Gal-I restrains CD22-dependent antigen receptor endocytosis and Shp-1 recruitment in normal and pathogenic immune signaling. Mol. Cell. Biol. 26, 4970–4981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Santos, L. et al. Dendritic cell-dependent inhibition of B cell proliferation requires CD22. J. Immunol. 180, 4561–4569 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta 1780, 472–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Wright, A. & Morrison, S. L. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotech. 15, 26–32 (1997).

    Article  CAS  Google Scholar 

  72. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. Hoffmeister, K. M. et al. Glycosylation restores survival of chilled blood platelets. Science 301, 1531–1534 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Jones, A. J. S. et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17, 529–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hiki, Y. et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59, 1077–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Nishie, T. et al. Development of immunoglobulin A nephropathy-like disease in β-1,4-galactosyl-transferase-I-deficient mice. Am. J. Pathol. 170, 447–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Anthony, R. M. et al. Racapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc. Natl Acad. Sci. USA 102, 15791–15794 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, X. et al. Phenotype changes of fut8 knockout mouse: core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol. 417, 11–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Vogt, G. et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature Genet. 37, 692–700 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Macher, B. A. & Galili, U. The Galα1, 3Galβ1, 4GlcNAc-R. (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta 1780, 75–88 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Padler-Karavani, V. et al. Diversity in specificity, abundance and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 31 July 2008 (doi:10.1093/glycob/cwn072).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ju, T. & Cummings, R. D. Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Green, R. S. et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27, 308–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Bianco, G. A., Toscano, M. A., Ilarregui, J. M. & Rabinovich, G. A. Impact of protein–glycan interactions in the regulation of autoimmunity and chronic inflammation. Autoimmunity Rev. 5, 349–356 (2006).

    Article  CAS  Google Scholar 

  87. Baum, L. G. et al. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109, 295–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Perone, M. J. et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J. Immunol. 177, 5278–5289 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Seki, M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 127, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Barrionuevo, P. et al. A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 178, 436–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Blois, S. M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nature Med. 13, 1450–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Taylor, K. R. et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44 and MD-2. J. Biol. Chem. 282, 18265–18275 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Jiang, D., Liang, J. & Noble, P. W. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Develop. Biol. 23, 435–461 (2007).

    Article  CAS  Google Scholar 

  95. Girish, K. S. & Kemparaju, K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 80, 1921–1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Carbone, F. R. & Gleeson, P. A. Carbohydrates and antigen recognition by T cells. Glycobiology 7, 725–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, X. J. & Cheung, N. K. GD2 oligosaccharide: target for cytotoxic T lymphocytes. J. Exp. Med. 182, 67–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, S. D. et al. Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood 112, 120–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Corthay, A. et al. Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen-induced arthritis. Eur. J. Immunol. 28, 2580–2590 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Zajonc, D. M. & Kronenberg, M. CD1 mediated T cell recognition of glycolipids. Curr. Opin. Struct. Biol. 17, 521–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Daniels, M. A. et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15, 1051–1061 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Moody, A. M. et al. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Kao, C., Daniels, M. A. & Jameson, S. C. Loss of CD8 and TCR binding to class I MHC ligands following T cell activation. Int. Immunol. 17, 1607–1617 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Moody, A. M. et al. Sialic acid capping of CD8β core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. 278, 7240–7246 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Kao, C., Sandau, M. M., Daniels, M. A. & Jameson, S. C. The sialyltransferase ST3Gal-I is not required for regulation of CD8-class I MHC binding during T cell development. J. Immunol. 176, 7421–7430 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Van Dyken, S. J., Green, R. S. & Marth, J. D. Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol. Cell. Biol. 27, 1096–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, L. et al. Notch-dependent control of myelopoiesis is regulated by fucosylation. Blood 112, 308–319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Irvine, K. D. & Wieschaus, E. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, J. Y., Wen, L., Zhang, W.-J. & Rao, Y. The secreted product of Xenopus gene lunatic fringe, a vertebrate signaling molecule. Science 273, 355–358 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goode, S. & Perrimon, N. Brainiac and fringe are similar pioneer proteins that impart specificity to notch signaling during Drosophila development. Cold Spring Harb. Symp. Quant. Biol. 62, 177–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Johnston, S. H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124, 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  115. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Brückner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000).

    Article  PubMed  Google Scholar 

  117. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, J., Moloney, D. J. & Stanley, P. Fringe modulation of Jagged1-induced Notch signaling requires the action of β4galactosyltransferase-1. Proc. Natl Acad. Sci. USA 98, 13716–13721 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, Y. et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276, 40338–40345 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Okajima, T. & Irvine, K. D. Regulation of Notch signaling by O-linked fucose. Cell 111, 893–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Okajima, T., Xu, A. & Irvine, K. D. Modulation of Notch-ligand binding by protein O-fucosyltransferase 1 and Fringe. J. Biol. Chem. 278, 42340–42345 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Shi, S. & Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc. Natl Acad. Sci. USA 100, 5234–5239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, L.-T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Okajima, T., Xu, A., Lei, L. & Irvine, K. D. Chaperone activity of protein O-fucosyltransferase 1 promotes Notch receptor folding. Science 307, 1599–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Acar, M. et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132, 247–258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stanley, P. Glucose: a novel regulator of Notch signaling. ACS Chem. Biol. 3, 210–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15, 225–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Visan, I. et al. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe-mediated competition for intrathymic niches. Nature Immunol. 7, 634–643 (2006).

    Article  CAS  Google Scholar 

  130. Jenkinson, E. J., Jenkinson, W. E., Rossi, S. W. & Anderson, G. The thymus and T-cell commitment: the right niche for Notch? Nature Rev. Immunol. 6, 551–555 (2006).

    Article  CAS  Google Scholar 

  131. Tanagaki, K. et al. Notch–RBP-J signaling in involved in cell fate determination of marginal zone B cells. Nature Immunol. 3, 443–450 (2002).

    Article  CAS  Google Scholar 

  132. Hozumi, K. et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nature Immunol. 5, 638–644 (2004).

    Article  CAS  Google Scholar 

  133. Santos, M. A. et al. Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells. Proc. Natl Acad. Sci. USA 104, 15454–15459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheng, P. & Gabrilovich, D. Notch signaling in differentiation and function of dendritic cells. Immunol. Res. 41, 1–14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kijima et al. Dendritic cell-mediated NK cell activation is controlled by Jagged2–Notch interaction. Proc. Natl Acad. Sci. USA 105, 7010–7015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Okamoto et al. Essential role of Notch signaling in effector memory CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J. Exp. Med. 205, 1087–1097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schaller, M. A. et al. Notch ligand Delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines. J. Exp. Med. 204, 2925–2934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun, J., Krawczyk, C. J. & Pearce, E. J. Suppression of Th2 cell development by Notch ligands Delta1 and Delta4. J. Immunol. 180, 1655–1661 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Morgan, R. et al. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed–Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 104, 13134–13139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Toscano, M. A. et al. Differential glycosylation of TH1, TH2, and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunol. 8, 825–834 (2007).

    Article  CAS  Google Scholar 

  142. Thomas, P. G. & Harn, D. A. Immune biasing by helminth glycans. Cell. Microbiol. 6, 13–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Opferman, J. T. & Korsmeyer, S. J. Apoptosis in the development and maintenance of the immune system. Nature Immunol. 4, 410–415 (2003).

    Article  CAS  Google Scholar 

  144. Hernandez, J. D. & Baum, L. G. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12, 127R–136R (2002). This publication reviews galectins in immune-cell apoptosis.

    Article  CAS  PubMed  Google Scholar 

  145. Hsu, D. K., Yang, R. Y. & Liu, F. T. Galectins in apoptosis. Methods Enzymol. 417, 256–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Stowell, S. R. et al. Human galectin-1, -2, and -4 induce surface expression of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109, 219–227 (2008).

    Article  CAS  Google Scholar 

  148. Stowell, S. R. et al. Differential roles of galectin-1 and galectin-3 in regulating leukcoyte viability and cytokine secretion. J. Immunol. 180, 3091–3102 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Stowell, S. R. et al. Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the carboxyl terminal domain. J. Biol. Chem. 283, 20547–20559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dias-Baruffi, M. et al. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J. Biol. Chem. 278, 41282–41293 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Vespa, G. N. et al. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibits IL-2 production and proliferation. J. Immunol. 162, 799–806 (1999).

    CAS  PubMed  Google Scholar 

  152. Pace, K. E., Hahn, H. P., Pang, M., Nguyen, J. T. & Baum, L. G. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J. Immunol. 165, 2331–2334 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Waizel, H., Blach, M., Hirabayashi, J., Kasai, K. I. & Brock, J. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 10, 131–140 (2000).

    Article  Google Scholar 

  154. Fuertes, M. B. et al. Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol. Cell. Biochem. 267, 177–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Cabrera, P. V. et al. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108, 2399–2406 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hahn, H. P. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Diff. 11, 1277–1286 (2004).

    Article  CAS  Google Scholar 

  157. Stillman, B. N. et al. Galectin-2 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Bi, S., Earl, L. A., Jacobs, L. & Baum, L. G. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J. Biol. Chem. 283, 12248–12258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Priatel, J. J. et al. The ST3Gal-I sialyltransferase controls CD8+ T cell homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Grewal, P. K. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nature Med. 14, 648–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Brewer, C. F., Miceli, M. C. & Baum, L. G. Clusters, bundles, arrays, and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12, 616–623 (2002). This article reviews the hypothesis that galectins generate a spatially precise, repetitive structure (lattice) that controls glycoprotein trafficking and function on the cell surface.

    Article  CAS  PubMed  Google Scholar 

  162. Nieminen, J., Kuno, A., Hirabayashi, J. & Sato, S. Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J. Biol. Chem. 282, 1374–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Rabinovich, G. A., Toscano, M. A., Jackson, S. S. & Vasta, G. R. Functions of cell surface galectin–glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520 (2007). This publication reviews findings regarding the galectins and their potential to form various lattices that can define functional units and membrane domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hernandez, J. D. et al. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J. Immunol. 177, 5328–5336 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, I.-J., Chen, H.-L. & Demetriou, M. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J. Biol. Chem. 282, 35361–35372 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Lajoie, P. et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J. Cell Biol. 179, 341–356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Ohtsubo, K., Takamatsu, S., Minowa, M. T., Yoshida, A. & Marth, J. D. Dietary and genetic control of glucose transporter-2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123, 1307–1321 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Lau, K. S. et al. Complex N-glycan number and degree of branching co-operate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. van Gisbergen K. P., Sanchez-Hernandez, M., Geijtenbeek, T. B. & van Kooyk, Y. Neutrophils medicate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201, 1281–1292 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Garcia-Vallejo, J. J. et al. DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through Lewis(Y) antigen expressed on ICAM-2. Mol. Immunol. 45, 2359–2369 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. McDonald, B. et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J. Exp. Med. 205, 915–927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bax, M. et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179, 8216–8224 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Freeze, H. H. Genetic defects in the human glycome. Nature Rev. Genet. 7, 537–551 (2006). A review of the human genomic data that are known to contribute to genetic disease by altered glycosylation.

    Article  CAS  PubMed  Google Scholar 

  176. Brooks, S. A. et al. Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies. Anticancer Agents Med. Chem. 8, 2–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Collins, B. t. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl Acad, Sci. USA. 282, 6104–6109 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the colleagues and researchers who have made contributions that were not referenced owing to space limitations. J.D.M. is supported by the Howard Hughes Medical Institute and grants from the National Institutes of Health, USA (HL57345, HL78784 and GM62116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamey D. Marth.

Related links

Related links

OMIM

rheumatoid arthritis

systemic lupus erythematosus

Tn syndrome

FURTHER INFORMATION

Jamey D. Marth's homepage

Glossary

Glycome

The biological repertoire of glycan structures.

Experimental autoimmune encephalomyelitis

An experimental model of multiple sclerosis. Autoimmune disease is induced in animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A short amino-acid sequence (the consensus sequence of which is V/IXYXXV/L, in which X denotes any amino acid) that is found in the cytoplasmic tail of inhibitory receptors. ITIMs are thought to mediate inhibitory signalling by recruiting phosphatases such as SHP1 (SRC-homology-2-domain-containing protein tyrosine phosphatase 1).

Clathrin-enriched microdomain

A region of the plasma membrane that is associated with clathrin-dependent endocytic mechanisms of protein trafficking and turnover.

IgA nephropathy

An inflammatory disease of the kidney that is associated with the glomerular deposition of IgA.

Old-world primates

A grouping of primates, which includes humans, that are native to Africa and Asia.

Henoch–Schönlein

An inflammatory disease that involves the blood vessels and causes vasculitis.

Hodgkin's lymphoma

A type of lymphoma that is characterized by the presence of Reed–Sternberg cells (derived from B cells) and that spreads between the lymph nodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marth, J., Grewal, P. Mammalian glycosylation in immunity. Nat Rev Immunol 8, 874–887 (2008). https://doi.org/10.1038/nri2417

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing