Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors

Abstract

Even before the partial success of a preventive HIV vaccine in a recent Phase III clinical trial, there had been an active research effort to determine one or more immune correlates of protection for HIV infection. This effort has been hampered by the lack of natural protective immunity against HIV. As a result, most of the studies have focused on long-term non-progressive infection or other clinical situations, none of which fully recapitulates protective immunity against HIV. Although this effort has been successful in defining characteristics of T cells in acute and non-progressive HIV infection, and has therefore greatly expanded our knowledge of the immunopathogenesis of AIDS, its success in defining immune correlates of protection is less clear. In this Opinion article we offer a perspective on how successful this effort has been in defining immune correlates of protection that have been, or will be, of use in the development of an HIV vaccine. Our view is that investing in an iterative approach to human vaccine efficacy trials of sufficient size and sampling frequency will improve the likelihood that an immune correlate of vaccine protection will be defined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional and adaptive trial design.

Similar content being viewed by others

References

  1. Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flynn, N. M. et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–665 (2005).

    Article  PubMed  Google Scholar 

  3. Pitisuttithum, P. et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Pantaleo, G. & Koup, R. A. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nature Med. 10, 806–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Plotkin, S. A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  PubMed  Google Scholar 

  7. Fowke, K. R. et al. Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya. Lancet 348, 1347–1351 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Baker, B. M., Block, B. L., Rothchild, A. C. & Walker, B. D. Elite control of HIV infection: implications for vaccine design. Expert Opin. Biol. Ther. 9, 55–69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leligdowicz, A. & Rowland-Jones, S. Tenets of protection from progression to AIDS: lessons from the immune responses to HIV-2 infection. Expert Rev. Vaccines 7, 319–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nature Rev. Immunol. 10, 11–23 (2010).

    Article  CAS  Google Scholar 

  12. Price, H. et al. A TRIM5α exon 2 polymorphism is associated with protection from HIV-1 infection in the Pumwani sex worker cohort. AIDS 24, 1813–1821 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Rowland-Jones, S. L. et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J. Clin. Invest. 102, 1758–1765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenberg, E. S. et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Edwards, B. H. et al. Magnitude of functional CD8+ T-cell responses to the Gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J. Virol. 76, 2298–2305 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ogg, G. S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Burgers, W. A. et al. Association of HIV-specific and total CD8+ T memory phenotypes in subtype C HIV-1 infection with viral set point. J. Immunol. 182, 4751–4761 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Addo, M. M. et al. Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently detectable in controlled than in progressive HIV-1 infection. PLoS ONE 2, e321 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hess, C. et al. HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363, 863–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Day, C. L. et al. Proliferative capacity of epitope-specific CD8 T-cell responses is inversely related to viral load in chronic human immunodeficiency virus type 1 infection. J. Virol. 81, 434–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 6, e1000917 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Migueles, S. A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, O. O. et al. Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J. Virol. 70, 5799–5806 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blackbourn, D. J. et al. Suppression of HIV replication by lymphoid tissue CD8+ cells correlates with the clinical state of HIV-infected individuals. Proc. Natl Acad. Sci. USA 93, 13125–13130 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spentzou, A. et al. Viral inhibition assay: a CD8 T cell neutralization assay for use in clinical trials of HIV-1 vaccine candidates. J. Infect. Dis. 201, 720–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, O. O. et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71, 3120–3128 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geldmacher, C. et al. Minor viral and host genetic polymorphisms can dramatically impact the biologic outcome of an epitope-specific CD8 T-cell response. Blood 114, 1553–1562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simons, B. C. et al. Despite biased TRBV gene usage against a dominant HLA B57-restricted epitope, TCR diversity can provide recognition of circulating epitope variants. J. Immunol. 181, 5137–5146 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Med. 12, 1198–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nature Med. 13, 46–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rolland, M. et al. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS ONE 3, e1424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zuniga, R. et al. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J. Virol. 80, 3122–3125 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hendel, H. et al. New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J. Immunol. 162, 6942–6946 (1999).

    CAS  PubMed  Google Scholar 

  38. Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Migueles, S. A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goulder, P. J. et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Turnbull, E. L. et al. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. J. Immunol. 176, 6130–6146 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Picado, J. et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 80, 3617–3623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Betts, M. R. et al. Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc. Natl Acad. Sci. USA 102, 4512–4517 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Streeck, H. et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J. Virol. 83, 7641–7648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goulder, P. J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goonetilleke, N. et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leslie, A. J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nature Med. 10, 282–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Feeney, M. E. et al. HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response. J. Immunol. 174, 7524–7530 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Goepfert, P. A. et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J. Exp. Med. 205, 1009–1017 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goulder, P. J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Gray, R. H. et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357, 1149–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Wawer, M. J. et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J. Infect. Dis. 191, 1403–1409 (2005).

    Article  PubMed  Google Scholar 

  54. Salazar-Gonzalez, J. F. et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206, 1273–1289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keele, B. F. et al. Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J. Exp. Med. 206, 1117–1134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hudgens, M. G. et al. Power to detect the effects of HIV vaccination in repeated low-dose challenge experiments. J. Infect. Dis. 200, 609–613 (2009).

    Article  PubMed  Google Scholar 

  57. Morgan, C. et al. The use of nonhuman primate models in HIV vaccine development. PLoS Med. 5, e173 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nishimura, Y. et al. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc. Natl Acad. Sci. USA 101, 12324–12329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shedlock, D. J., Silvestri, G. & Weiner, D. B. Monkeying around with HIV vaccines: using rhesus macaques to define 'gatekeepers' for clinical trials. Nature Rev. Immunol. 9, 717–728 (2009).

    Article  CAS  Google Scholar 

  60. McElrath, M. J. et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nature Med. 15, 293–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. D'Souza, M. P. & Altfeld, M. Measuring HIV-1-specific T cell immunity: how valid are current assays? J. Infect. Dis. 197, 337–339 (2008).

    Article  PubMed  Google Scholar 

  64. Streeck, H., Frahm, N. & Walker, B. D. The role of IFN-γ Elispot assay in HIV vaccine research. Nature Protoc. 4, 461–469 (2009).

    Article  CAS  Google Scholar 

  65. Janetzki, S., Cox, J. H., Oden, N. & Ferrari, G. Standardization and validation issues of the ELISPOT assay. Methods Mol. Biol. 302, 51–86 (2005).

    CAS  PubMed  Google Scholar 

  66. Baeten, J. M. et al. Trends in HIV-1 incidence in a cohort of prostitutes in Kenya: implications for HIV-1 vaccine efficacy trials. J. Acquir. Immune Defic. Syndr. 24, 458–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Kaul, R. et al. Reduced HIV risk-taking and low HIV incidence after enrollment and risk-reduction counseling in a sexually transmitted disease prevention trial in Nairobi, Kenya. J. Acquir. Immune Defic. Syndr. 30, 69–72 (2002).

    Article  PubMed  Google Scholar 

  68. van Loggerenberg, F. et al. Establishing a cohort at high risk of HIV infection in South Africa: challenges and experiences of the CAPRISA 002 acute infection study. PLoS ONE 3, e1954 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Qin, L., Gilbert, P. B., Corey, L., McElrath, M. J. & Self, S. G. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis. 196, 1304–1312 (2007).

    Article  PubMed  Google Scholar 

  70. The Council of the Global HIV Vaccine Enterprise et al. The 2010 scientific strategic plan of the Global HIV Vaccine Enterprise. Nature Med. 16, 981–989 (2010).

Download references

Acknowledgements

We thank the many members of the Vaccine Research Center whose helpful discussions over the years have helped to frame the opinions expressed here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Douek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koup, R., Graham, B. & Douek, D. The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nat Rev Immunol 11, 65–70 (2011). https://doi.org/10.1038/nri2890

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2890

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology