Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of differential antiviral immunity in children and adults

Key Points

  • The immune response is adapted at all stages of early life to maximize survival. These adaptations during intrauterine and early extrauterine life favour protection against extracellular pathogens, and leave infants particularly vulnerable to intracellular pathogens, such as viruses that are transmitted perinatally.

  • This Review contrasts the disease outcomes of three viral infections that can be transmitted perinatally — namely, HIV, cytomegalovirus (CMV) and hepatitis B virus (HBV) infections — in infants and adults to illustrate the ontogeny of the immune response to virus infections and the impact of the immune differences between early life and adulthood on these as well as other viral infections.

  • Following HIV infection of children, survival is 1 year without treatment, compared with 10 years in adult infection. In HBV infection, perinatal transmission results in persistent infection in 90% of cases, compared with 5% in adults. Although perinatally acquired persistent HBV infection is usually asymptomatic in childhood, it carries a high risk of cirrhosis and hepatocellular carcinoma developing in adulthood. Perinatally transmitted CMV infection, by contrast, does not typically cause disease in infants, although excretion of the virus is prolonged compared with adults. Congenital CMV infection occurring in the first trimester of pregnancy can cause disease in a minority of infants infected at this time.

  • The immune response in intrauterine and early neonatal life is tolerogenic. This is reflected by the propensity of naive fetal T cells to differentiate into regulatory T cells following stimulation by non-inherited maternal alloantigens, and by the greater capacity of neonatal innate immune cells to produce the anti-inflammatory and immunomodulatory cytokine interleukin-10 (IL-10) following Toll-like receptor stimulation.

  • T helper 1 (TH1) cell-supporting cytokines — such as type I interferons, interferon-γ and IL-12 — are produced in decreased amounts during childhood, and IL-12 production does not reach adult levels until adolescence. By contrast, TH17 cell-supporting cytokines, such as IL-6 and IL-23, are increased in neonates compared with adults. The apparent skewing of the immune response in fetal and early neonatal life favours defence against extracellular pathogens, and avoids damaging pro-inflammatory TH1 cell responses, but at the expense of effective antiviral immune responses.

  • In spite of the effective strategies that exist for the prevention of mother-to-child transmission of HIV and hepatitis C virus, these are successful only in certain settings. A deeper understanding of the ontogeny of antiviral immunity will be crucial to guide the development of new strategies, including neonatal immunization and the optimal use of antiviral therapies in early life, to combat the disease caused by these viruses.

Abstract

The course of immune maturation has evolved to favour survival at each stage of development in early life. Fetal and neonatal immune adaptations facilitate intrauterine survival and provide early postnatal protection against extracellular pathogens, but they leave infants susceptible to intracellular pathogens such as viruses that are acquired perinatally. This Review focuses on three such pathogens — HIV, hepatitis B virus and cytomegalovirus — and relates the differential impact of these infections in infants and adults to the antiviral immunity that is generated at different ages. A better understanding of age-specific antiviral immunity may inform the development of integrated prevention, treatment and vaccine strategies to minimize the global disease burden resulting from these infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential outcomes of viral infections in early and later life.
Figure 2: Changes in lymphocyte subset composition from birth to early adulthood.
Figure 3: Differences between innate immunity in early and later life.
Figure 4: The number of children and adults living with HIV.

Similar content being viewed by others

References

  1. World Health Organization, UNAIDS & UNICEF. Global HIV/AIDS response: Progress report 2011 (WHO, 2011).

  2. The Working Group on MTCT of HIV. Rates of mother-to-child transmission of HIV-1 in Africa, America and Europe: results of 13 perinatal studies. J. Acquired Immune Defic. Syndr. Hum. Retrovirol. 8, 506–510 (1995).

  3. Collaborative Group on AIDS Incubation and HIV Survival, including the CASCADE EU Concerted Action. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 355, 1131–1137 (2000).

  4. Newell, M. L. . et al. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364, 1236–1243 (2004).

    Article  PubMed  Google Scholar 

  5. Becquet, R. . et al. Children who acquire HIV infection perinatally are at higher risk of early death than those acquiring infection through breastmilk: a meta-analysis. PLoS ONE 7, e28510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marinda, E. et al.Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr. Infect. Dis. J. 26, 519–526 (2007). This study describes the natural history of perinatal HIV infection in a large cohort of infants prior to the availability of antiretroviral therapy; it demonstrates the importance of the timing of mother-to-child transmission in terms of disease outcome.

    Article  PubMed  Google Scholar 

  7. Biggar, R. J. et al. Virus levels in untreated African infants infected with human immunodeficiency virus type 1. J. Infect. Dis. 180, 1838–1843 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Obimbo, E. M. et al. Pediatric HIV-1 in Kenya: pattern and correlates of viral load and association with mortality. J. Acquired Immune Defic. Syndr. 51, 209–215 (2009).

    Article  Google Scholar 

  9. McIntosh, K. et al. Age- and time-related changes in extracellular viral load in children vertically infected by human immunodeficiency virus. Pediatr. Infect. Dis. J. 15, 1087–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Custer, B. et al. Global epidemiology of hepatitis B virus. J. Clin. Gastroenterol. 38, S158–S168 (2004).

    Article  PubMed  Google Scholar 

  11. Hyams, K. C. Risks of chronicity following acute hepatitis B virus infection: a review. Clin. Infect. Dis. 20, 992–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Beasley, R. P. et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet 2, 1099–1102 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, D. Z. et al. Role of placental tissues in the intrauterine transmission of hepatitis B virus. Am. J. Obstet. Gynecol. 185, 981–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Han, L. et al. A meta-analysis of lamivudine for interruption of mother-to-child transmission of hepatitis B virus. World J. Gastroenterol. 17, 4321–4333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McMahon, B. J. et al. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J. Infect. Dis. 151, 599–603 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh, C. C. et al. Age at first establishment of chronic hepatitis B virus infection and hepatocellular carcinoma risk. A birth order study. Am. J. Epidemiol. 136, 1115–1121 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Kenneson, A. & Cannon, M. J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 17, 253–276 (2007).

    Article  PubMed  Google Scholar 

  18. Dollard, S. C., Grosse, S. D. & Ross, D. S. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol. 17, 355–363 (2007).

    Article  PubMed  Google Scholar 

  19. Pass, R. F., Fowler, K. B., Boppana, S. B., Britt, W. J. & Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J. Clin. Virol. 35, 216–220 (2006).

    Article  PubMed  Google Scholar 

  20. Bevot, A. et al. Long-term outcome in preterm children with human cytomegalovirus infection transmitted via breast milk. Acta Paediatr. 101, e167–e172 (2012).

    Article  PubMed  Google Scholar 

  21. Wakabayashi, H. et al. Low HCMV DNA copies can establish infection and result in significant symptoms in extremely preterm infants: a prospective study. Am. J. Perinatol. 29, 377–382 (2012).

    Article  PubMed  Google Scholar 

  22. Nijman, J. et al. Urine viral load and correlation with disease severity in infants with congenital or postnatal cytomegalovirus infection. J. Clin. Virol. 54, 121–124 (2012).

    Article  PubMed  Google Scholar 

  23. Pass, R. F., Stagno, S., Britt, W. J. & Alford, C. A. Specific cell-mediated immunity and the natural history of congenital infection with cytomegalovirus. J. Infect. Dis. 148, 953–961 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Belnoue, E., Fontannaz-Bozzotti, P., Grillet, S., Lambert, P. H. & Siegrist, C. A. Protracted course of lymphocytic choriomeningitis virus WE infection in early life: induction but limited expansion of CD8+ effector T cells and absence of memory CD8+ T cells. J. Virol. 81, 7338–7350 (2007). This study demonstrates differential CD8+ T cell activity between infants and adults in a murine LCMV model and shows that these differences contribute to persistent viral infection in infants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makrigiannakis, A. et al. Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nature Immunol. 2, 1018–1024 (2001).

    Article  CAS  Google Scholar 

  26. Roth, I. et al. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J. Exp. Med. 184, 539–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, C. et al. A critical role for murine complement regulator Crry in fetomaternal tolerance. Science 287, 498–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunol. 5, 266–271 (2004).

    Article  CAS  Google Scholar 

  29. Haynes, B. F. & Heinly, C. S. Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J. Exp. Med. 181, 1445–1458 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008). This study demonstrates that tolerance to maternal antigens is induced in utero through the induction of fetal CD4+CD25hiFOXP3+ regulatory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahata, Y. et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp. Hematol. 32, 622–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kollmann, T. R. et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol. 183, 7150–7160 (2009). This study demonstrates that, compared with those of adults, neonatal innate immune cells preferentially induce T H 17- and T H 2-type immune responses to provide protection against extracellular pathogens in early life.

    Article  CAS  PubMed  Google Scholar 

  34. Prescott, S. L. et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol. 160, 4730–4737 (1998).

    CAS  PubMed  Google Scholar 

  35. Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nature Rev. Immunol. 7, 379–390 (2007).

    Article  CAS  Google Scholar 

  36. Scott, G. M. et al. Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid. J. Infect. Dis. 205, 1305–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Pereira, L. & Maidji, E. Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblasts converge. Curr. Top. Microbiol. Immunol. 325, 383–395 (2008).

    CAS  PubMed  Google Scholar 

  38. Lewis, D. B. & Wilson, C. B. in Infectious Diseases of the Fetus and Newborn (eds Remington, J.S. et al.) (Elsevier, 2011).

    Google Scholar 

  39. Strunk, T. et al. Reduced levels of antimicrobial proteins and peptides in human cord blood plasma. Arch. Dis. Child Fetal Neonatal Ed. 94, F230–F231 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Stetson, D. B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Belderbos, M. E. et al. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol. 133, 228–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belderbos, M. E. et al. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors. PLoS ONE 7, e33419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levy, O. et al. The adenosine system selectively inhibits TLR-mediated TNF-α production in the human newborn. J. Immunol. 177, 1956–1966 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, M. et al. Acquisition of adult-like TLR4 and TLR9 responses during the first year of life. PLoS ONE 5, e10407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corbett, N. P. et al. Ontogeny of Toll-like receptor mediated cytokine responses of human blood mononuclear cells. PLoS ONE 5, e15041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Upham, J. W. et al. Development of interleukin-12-producing capacity throughout childhood. Infect. Immun. 70, 6583–6588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakazawa, T., Agematsu, K. & Yabuhara, A. Later development of Fas ligand-mediated cytotoxicity as compared with granule-mediated cytotoxicity during the maturation of natural killer cells. Immunology 92, 180–187 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sundstrom, Y. et al. The expression of human natural killer cell receptors in early life. Scand. J. Immunol. 66, 335–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Dalle, J. H. et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr. Res. 57, 649–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Bernstein, H. B., Kinter, A. L., Jackson, R. & Fauci, A. S. Neonatal natural killer cells produce chemokines and suppress HIV replication in vitro. AIDS Res. Hum. Retroviruses 20, 1189–1195 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Jenkins, M., Mills, J. & Kohl, S. Natural killer cytotoxicity and antibody-dependent cellular cytotoxicity of human immunodeficiency virus-infected cells by leukocytes from human neonates and adults. Pediatr. Res. 33, 469–474 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez, B. et al. Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. JAMA 296, 1498–1506 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Carrington, M. & O'Brien, S. J. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Goulder, P. J. et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nature Med. 13, 46–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Nixon, D. F. et al. HIV-1 Gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336, 484–487 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Crawford, H. et al. Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. J. Virol. 81, 8346–8351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez-Picado, J. et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 80, 3617–3623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akinsiku, O. T., Bansal, A., Sabbaj, S., Heath, S. L. & Goepfert, P. A. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J. Acquir. Immune Defic. Syndr. 58, 132–140 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ferrando-Martinez, S. et al. Differential Gag-specific polyfunctional T cell maturation patterns in HIV-1 elite controllers. J. Virol. 86, 3667–3674 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nature Immunol. 3, 1061–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Migueles, S. A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamamoto, T. et al. Virus inhibition activity of effector memory CD8+ T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J. Virol. 86, 5877–5884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kloverpris, H. N. et al. HLA-B*57 micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J. Virol. 86, 919–929 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matthews, P. C. et al. Central role of reverting mutations in HLA associations with human immunodeficiency virus set point. J. Virol. 82, 8548–8559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol. 10, 29–37 (2009).

    Article  CAS  Google Scholar 

  76. Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 14733–14738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jones, R. B. et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med. 205, 2763–2779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kaufmann, D. E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nature Immunol. 8, 1246–1254 (2007).

    Article  CAS  Google Scholar 

  81. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Med. 12, 1198–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Betts, M. R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pitcher, C. J. et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nature Med. 5, 518–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Ranasinghe, S. et al. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. J. Virol. 86, 277–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, K. H. et al. B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. Nature Commun. 1, 102 (2010).

    Article  CAS  Google Scholar 

  89. Burton, D. R. Antibodies, viruses and vaccines. Nature Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  90. Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Abrams, E. J. et al. Association of human immunodeficiency virus (HIV) load early in life with disease progression among HIV-infected infants. New York City Perinatal HIV Transmission Collaborative Study Group. J. Infect. Dis. 178, 101–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Biggar, R. J. et al. Viral levels in newborn African infants undergoing primary HIV-1 infection. AIDS 15, 1311–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Dickover, R. E. et al. Early prognostic indicators in primary perinatal human immunodeficiency virus type 1 infection: importance of viral RNA and the timing of transmission on long-term outcome. J. Infect. Dis. 178, 375–387 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Mphatswe, W. et al. High frequency of rapid immunological progression in African infants infected in the era of perinatal HIV prophylaxis. AIDS 21, 1253–1261 (2007).

    Article  PubMed  Google Scholar 

  95. Rouet, F. et al. Pediatric viral human immunodeficiency virus type 1 RNA levels, timing of infection, and disease progression in African HIV-1-infected children. Pediatrics 112, e289 (2003).

    Article  PubMed  Google Scholar 

  96. Shearer, W. T. et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N. Engl. J. Med. 336, 1337–1342 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Luzuriaga, K. et al. HIV-1-specific cytotoxic T lymphocyte responses in the first year of life. J. Immunol. 154, 433–443 (1995).

    CAS  PubMed  Google Scholar 

  98. Scott, Z. A. et al. Infrequent detection of HIV-1-specific, but not cytomegalovirus-specific, CD8+ T cell responses in young HIV-1-infected infants. J. Immunol. 167, 7134–7140 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Shalekoff, S. et al. Identification of human immunodeficiency virus-1 specific CD8+ and CD4+ T cell responses in perinatally-infected infants and their mothers. AIDS 23, 789–798 (2009).

    Article  PubMed  Google Scholar 

  100. Thobakgale, C. F. et al. Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants. J. Virol. 81, 12775–12784 (2007). This study shows that, even on the first day of life, HIV-specific CD8+ T cells can be detected in perinatally infected infants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goulder, P. J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Pillay, T. et al. Unique acquisition of cytotoxic T-lymphocyte escape mutants in infant human immunodeficiency virus type 1 infection. J. Virol. 79, 12100–12105 (2005).

  103. Thobakgale, C. F. et al. Impact of HLA in mother and child on paediatric HIV-1 disease progression. J. Virol. 83, 10234–10244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lohman, B. L. et al. Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific γ interferon responses during the first year of life in HIV-1-infected infants. J. Virol. 79, 8121–8130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nqoko, B. et al. HIV-specific Gag responses in early infancy correlate with clinical outcome and inversely with viral load. AIDS Res. Hum. Retroviruses 27, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang, S. et al. Deficiency of HIV-Gag-specific T cells in early childhood correlates with poor viral containment. J. Immunol. 181, 8103–8111 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Prendergast, A. et al. Gag-specific CD4+ T-cell responses are associated with virological control of paediatric HIV-1 infection. AIDS 25, 1329–1331 (2011).

    Article  PubMed  Google Scholar 

  108. Thobakgale, C. F. et al. Short communication: CD8+ T cell polyfunctionality profiles in progressive and nonprogressive pediatric HIV type 1 infection. AIDS Res. Hum. Retroviruses 27, 1005–1012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prendergast, A. et al. Factors influencing T cell activation and programmed death 1 expression in HIV-infected children. AIDS Res. Hum. Retroviruses 28, 465–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Ssewanyana, I. et al. The distribution and immune profile of T cell subsets in HIV-infected children from Uganda. AIDS Res. Hum. Retroviruses 25, 65–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leslie, A. et al. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J. Exp. Med. 201, 891–902 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Prado, J. G. et al. Replicative capacity of human immunodeficiency virus type 1 transmitted from mother to child is associated with pediatric disease progression rate. J. Virol. 84, 492–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Sanchez-Merino, V., Nie, S. & Luzuriaga, K. HIV-1-specific CD8+ T cell responses and viral evolution in women and infants. J. Immunol. 175, 6976–6986 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Tang, Y. et al. Correlates of spontaneous viral control among long-term survivors of perinatal HIV-1 infection expressing human leukocyte antigen-B57. AIDS 24, 1425–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Hartigan-O'Connor, D. J., Abel, K. & McCune, J. M. Suppression of SIV-specific CD4+ T cells by infant but not adult macaque regulatory T cells: implications for SIV disease progression. J. Exp. Med. 204, 2679–2692 (2007). This study shows that T Reg cells in infant, but not adult, macaques suppress SIV-specific CD4+ T cell responses, which can only be detected after the depletion of T Reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Feeney, M. E. et al. Reconstitution of virus-specific CD4 proliferative responses in pediatric HIV-1 infection. J. Immunol. 171, 6968–6975 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ssewanyana, I. et al. Profile of T cell immune responses in HIV-infected children from Uganda. J. Infect. Dis. 196, 1667–1670 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Paul, M. E. et al. Predictors of immunologic long-term nonprogression in HIV-infected children: implications for initiating therapy. J. Allergy Clin. Immunol. 115, 848–855 (2005).

    Article  PubMed  Google Scholar 

  119. Hazenberg, M. D. et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17, 1881–1888 (2003).

    Article  PubMed  Google Scholar 

  120. Finkel, T. H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Giorgi, J. V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Silvestri, G. et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18, 441–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Barry, A. P. et al. Depletion of CD8+ cells in sooty mangabey monkeys naturally infected with simian immunodeficiency virus reveals limited role for immune control of virus replication in a natural host species. J. Immunol. 178, 8002–8012 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Chisari, F. V. & Ferrari, C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 13, 29–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Nebbia, G., Peppa, D. & Maini, M. K. Hepatitis B infection: current concepts and future challenges. QJM 105, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rehermann, B., Ferrari, C., Pasquinelli, C. & Chisari, F. V. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nature Med. 2, 1104–1108 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Ganem, D. & Prince, A. M. Hepatitis B virus infection — natural history and clinical consequences. N. Engl. J. Med. 350, 1118–1129 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Liang, T. J. Hepatitis B: the virus and disease. Hepatology 49, S13–S21 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Koo, Y. X. et al. Risk of hepatitis B virus (HBV) reactivation in hepatitis B surface antigen negative/hepatitis B core antibody positive patients receiving rituximab-containing combination chemotherapy without routine antiviral prophylaxis. Ann. Hematol. 90, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, P. L. et al. Immune effectors required for hepatitis B virus clearance. Proc. Natl Acad. Sci. USA 107, 798–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Webster, G. J. et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32, 1117–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med. 205, 2111–2124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lopes, A. R. et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J. Clin. Invest. 118, 1835–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Walker, L. J. et al. Human MAIT and CD8αα cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119, 422–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Heathcote, E. J. Demography and presentation of chronic hepatitis B virus infection. Am. J. Med. 121, S3–S11 (2008).

    PubMed  Google Scholar 

  137. Chang, M. H. et al. The significance of spontaneous hepatitis B e antigen seroconversion in childhood: with special emphasis on the clearance of hepatitis B e antigen before 3 years of age. Hepatology 22, 1387–1392 (1995).

    CAS  PubMed  Google Scholar 

  138. Zhou, Y. & Holmes, E. C. Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J. Mol. Evol. 65, 197–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Dunn, C. et al. Temporal analysis of early immune responses in patients with acute hepatitis B infection. Gastroenterology 137, 1289–1300 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vincent, I. E. et al. Hepatitis B virus impairs TLR9 expression and function in plasmacytoid dendritic cells. PLoS ONE 6, e26315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Publicover, J. et al. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J. Clin. Invest. 121, 1154–1162 (2011). This study provides mechanistic evidence for the role of IL-21 in determining long-term outcome after HBV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Barin, F. et al. Immune response in neonates to hepatitis B vaccine. Lancet 1, 251–253 (1982).

    Article  CAS  PubMed  Google Scholar 

  144. Su, W. J. et al. Effect of age on the incidence of acute hepatitis B after 25 years of a universal newborn hepatitis B immunization program in Taiwan. J. Infect. Dis. 205, 757–762 (2012).

    Article  PubMed  Google Scholar 

  145. Wong, V. C. et al. Prevention of the HBsAg carrier state in newborn infants of mothers who are chronic carriers of HBsAg and HBeAg by administration of hepatitis-B vaccine and hepatitis-B immunoglobulin. Double-blind randomised placebo-controlled study. Lancet 1, 921–926 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, Q. et al. Antibody levels and immune memory 23 years after primary plasma-derived hepatitis B vaccination: results of a randomized placebo-controlled trial cohort from China where endemicity is high. Vaccine 29, 2302–2307 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Koumbi, L. et al. Hepatitis B-specific T helper cell responses in uninfected infants born to HBsAg+/HBeAg mothers. Cell. Mol. Immunol. 7, 454–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Komatsu, H. et al. Cellular immunity in children with successful immunoprophylactic treatment for mother-to-child transmission of hepatitis B virus. BMC Infect. Dis. 10, 103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hansen, S. G. et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 328, 102–106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Polic, B. et al. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188, 1047–1054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sylwester, A. W. et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673–685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Komatsu, H. et al. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun. Ageing 3, 11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Northfield, J., Lucas, M., Jones, H., Young, N. T. & Klenerman, P. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with 'memory inflation' in human cytomegalovirus infection. Immunol. Cell Biol. 83, 182–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Wills, M. et al. Report from the second cytomegalovirus and immunosenescence workshop. Immun. Ageing 8, 10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Karrer, U. et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170, 2022–2029 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. O'Hara, G. A., Welten, S. P., Klenerman, P. & Arens, R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 33, 84–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Torti, N., Walton, S. M., Brocker, T., Rulicke, T. & Oxenius, A. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 7, e1002313 (2011). This study provides a demonstration of the anatomical and cellular requirements for memory inflation in CMV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ehlinger, E. P. et al. Maternal cytomegalovirus-specific immune responses and symptomatic postnatal cytomegalovirus transmission in very low-birth-weight preterm infants. J. Infect. Dis. 204, 1672–1682 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cannon, M. J., Hyde, T. B. & Schmid, D. S. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev. Med. Virol. 21, 240–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Miles, D. J. et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J. Virol. 81, 5766–5776 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Miles, D. J. et al. Maintenance of large subpopulations of differentiated CD8 T-cells two years after cytomegalovirus infection in Gambian infants. PLoS ONE 3, e2905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Elbou Ould, M. A. et al. Cellular immune response of fetuses to cytomegalovirus. Pediatr. Res. 55, 280–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Marchant, A. et al. Mature CD8+ T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111, 1747–1755 (2003). This study provides the first demonstration of effector CD8+ T cell responses specific for CMV generated during prenatal life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pedron, B. et al. Comparison of CD8+ T cell responses to cytomegalovirus between human fetuses and their transmitter mothers. J. Infect. Dis. 196, 1033–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Vermijlen, D. et al. Human cytomegalovirus elicits fetal γδ T cell responses in utero. J. Exp. Med. 207, 807–821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tu, W. et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J. Immunol. 172, 3260–3267 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Yager, E. J. et al. γ-Herpesvirus-induced protection against bacterial infection is transient. Viral Immunol. 22, 67–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344, 1366–1371 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Pass, R. F. et al. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 360, 1191–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kharfan-Dabaja, M. A. et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 12, 290–299 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. UNAIDS. Countdown to zero: Global plan towards elimination of new HIV infections among children by 2015 and keeping their mothers alive (UNAIDS, 2011).

  174. Sanchez-Schmitz, G. & Levy, O. Development of newborn and infant vaccines. Sci. Transl. Med. 3, 90ps27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kimberlin, D. W. et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J. Pediatr. 143, 16–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Oliver, S. et al. Neurodevelopmental outcomes following ganciclovir therapy in symptomatic congenital cytomegalovirus infections involving the central nervous system. J. Clin. Virol. 46 (Suppl. 4), S22–S26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kovacs, A. et al. Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection Study Group. N. Engl. J. Med. 341, 77–84 (1999). This study demonstrates the importance of viral co-infections in early life: infants infected with both HIV and CMV had higher rates of disease progression by 18 months of age than infants infected only with HIV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hunt, P. W. et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J. Infect. Dis. 203, 1474–1483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. van Gent, R. et al. Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin. Immunol. 133, 95–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Warszawski, J. et al. Long-term nonprogression of HIV infection in children: evaluation of the ANRS prospective French pediatric cohort. Clin. Infect. Dis. 45, 785–794 (2007).

    Article  PubMed  Google Scholar 

  181. Deeks, S. G. & Walker, B. D. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. De Jongh, F. E. et al. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology 103, 1630–1635 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Wellcome Trust, the NIHR Biomedical Research Centre, Oxford, the Oxford Martin School, the UK Medical Research Council and the US National Institutes of Health (grant 5U19A082630-04) for support. We would like to thank also C. Wilson and A. Marchant for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. R. Goulder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Andrew J. Prendergast's homepage

Paul Klenerman's homepage

Philip J. R. Goulder's homepage

AVERT Worldwide HIV and AIDS Statistics

ClinicalTrials.gov

Glossary

Infancy

The first year of life.

Active immunization

The induction of immunity by immunogens that activate and expand the endogenous immune repertoire. Such immunogens induce antibodies and cell-mediated immunity, as well as immunological memory that might last for decades.

Passive immunization

Immunity that is provided rapidly by the transfer of immunoglobulins, the maximal activity of which lasts for approximately 2–3 weeks before it wanes owing to catabolic destruction.

Neonates

Infants up to 28 days of age.

Long-term non-progressors

(LTNPs). There is no universally adopted definition of LTNPs, and often the term LTNP is used interchangeably with HIV controller, because control of viraemia is strongly predictive of long-term non-progression of disease. LTNPs are individuals infected with HIV whose plasma viral load is controlled to low levels for extended periods. Stricter definitions of LTNPs include the duration of infection and preservation of CD4+ T cell numbers.

Mucosa-associated invariant T cells

(MAIT cells). A conserved mammalian T cell subset that expresses TCR α-chains with a canonical Vα7.2 junctional sequence in rodents and humans. MAIT cells are specific for an as-yet-undefined antigen that is bound to the monomorphic MHC class I-related molecule MR1. In a similar manner to invariant natural killer T cells, MAIT cells typically express memory T cell markers and natural killer cell receptors, and in adult humans they account for one in six circulating CD8+ T cells.

Follicular helper T cells

CD4+ T helper cells that are specialized to regulate multiple stages of antigen-specific B cell immunity through cognate cell contact and the secretion of cytokines. They localize to B cell follicles during immune responses.

Memory inflation

The gradual accumulation of peptide-specific CD8+ T cells with an effector memory phenotype that occurs after the resolution of certain viral infections (for example, MCMV infection).

Immunosenescence

The decreased function of the immune system with age. In particular, the number of naive T cells decreases as thymic function declines, and the number of terminally differentiated T cells with shortened telomeres increases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prendergast, A., Klenerman, P. & Goulder, P. The impact of differential antiviral immunity in children and adults. Nat Rev Immunol 12, 636–648 (2012). https://doi.org/10.1038/nri3277

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri3277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing