Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tools to therapeutically harness the human antibody response

Key Points

  • There have been recent advances in the methodologies used for isolating and producing antigen-specific monoclonal antibodies that are naturally generated in humans in response to vaccines or infections. This has allowed a rapid and productive rise in the isolation and characterization of fully human monoclonal antibodies.

  • These human monoclonal antibodies are greatly improving our knowledge of the natural human response to pathogens and are instrumental in epitope discovery. They are also being developed as therapeutic agents against many infectious and autoimmune diseases.

  • Three different strategies have been used to identify and isolate B cells expressing immunoglobulins with the desired specificity and functional characteristics at the monoclonal level. The first involves panning phage display libraries that have been constructed from the immunoglobulin variable genes of immunized or infected individuals. In the second approach, memory B cells are immortalized, and then in vitro cultures are screened for antibody specificity. The third method involves single-cell sorting, followed by cloning of the transcribed immunoglobulin genes and their expression as monoclonal antibodies; this strategy may or may not include flow cytometry-based pre-selection.

  • If the intent is to isolate the most effective neutralizing human monoclonal antibodies, then highly targeted high-throughput screening is the most appropriate strategy. This can be achieved through phage display, memory B cell immortalization or flow cytometry-based antigen-specific selection from an immune individual. To fully characterize the spectrum of the B cell repertoire responding to an immune challenge, broader, less selective criteria can be used for cloning human monoclonal antibodies.

  • The most recent and exciting advances in the isolation of human monoclonal antibodies have been in response to HIV and influenza virus infection or vaccination. Clever antibody-screening methods and the careful selection of human donors have allowed for the isolation of rare, broadly neutralizing antibodies to both of these viruses.

  • It is hoped that these recent advances in isolating naturally generated broadly neutralizing antibodies specific for evolving viruses will speed up the development of effective vaccines.

Abstract

The natural human antibody response is a rich source of highly specific, neutralizing and self-tolerant therapeutic reagents. Recent advances have been made in isolating and characterizing monoclonal antibodies that are generated in response to natural infection or vaccination. Studies of the human antibody response have led to the discovery of crucial epitopes that could serve as new targets in vaccine design and in the creation of potentially powerful immunotherapies. With a focus on influenza virus and HIV, herein we summarize the technological tools used to identify and characterize human monoclonal antibodies and describe how these tools might be used to fight infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methodologies commonly used to isolate human monoclonal antibodies.
Figure 2: Summary of the processes typical of human monoclonal antibody isolation and analysis.
Figure 3: Structures of influenza haemagglutinin and HIV gp120.

Similar content being viewed by others

References

  1. Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nature Rev. Microbiol. 2, 695–703 (2004).

    Article  CAS  Google Scholar 

  2. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS  PubMed  Google Scholar 

  3. Winter, G. & Harris, W. J. Humanized antibodies. Immunol. Today 14, 243–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Carter, P. J. Potent antibody therapeutics by design. Nature Rev. Immunol. 6, 343–357 (2006).

    Article  CAS  Google Scholar 

  5. Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nature Rev. Immunol. 10, 301–316 (2010).

    Article  CAS  Google Scholar 

  6. Weiner, L. M., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Rev. Immunol. 10, 317–327 (2010).

    Article  CAS  Google Scholar 

  7. Bradbury, A. R., Sidhu, S., Dubel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotech. 29, 245–254 (2011).

    Article  CAS  Google Scholar 

  8. Jin, A. et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nature Med. 15, 1088–1092 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011). This study describes the isolation of an antibody that broadly neutralizes both group 1 and group 2 influenza virus strains.

    Article  CAS  PubMed  Google Scholar 

  10. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009). This study used a very targeted high-throughput method to detect and isolate HIV-specific broadly neutralizing antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marasco, W. A. & Sui, J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nature Biotech. 25, 1421–1434 (2007).

    Article  CAS  Google Scholar 

  13. Marks, J. D. et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology 10, 779–783 (1992).

    CAS  PubMed  Google Scholar 

  14. Steinitz, M., Klein, G., Koskimies, S. & Makel, O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269, 420–422 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Burioni, R. et al. Monoclonal antibodies isolated from human B cells neutralize a broad range of H1 subtype influenza A viruses including swine-origin influenza virus (S-OIV). Virology 399, 144–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Habersetzer, F. et al. Characterization of human monoclonal antibodies specific to the hepatitis C virus glycoprotein E2 with in vitro binding neutralization properties. Virology 249, 32–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Atlaw, T., Kozbor, D. & Roder, J. C. Human monoclonal antibodies against Mycobacterium leprae. Infect. Immun. 49, 104–110 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cole, S. P., Campling, B. G., Atlaw, T., Kozbor, D. & Roder, J. C. Human monoclonal antibodies. Mol. Cell. Biochem. 62, 109–120 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Buchacher, A. et al. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res. Hum. Retroviruses 10, 359–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Med. 10, 871–875 (2004). This paper describes the first published improved method for the EBV-mediated transformation of memory B cells, which increased the efficiency of B cell immortalization to a level that has allowed the isolation of naturally generated monoclonal antibodies in many diseases.

    Article  CAS  PubMed  Google Scholar 

  21. Krause, J. C. et al. A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. J. Virol. 85, 10905–10908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corti, D. et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120, 1663–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krause, J. C. et al. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86, 6334–6340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, X. et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonsignori, M. et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85, 9998–10009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corti, D. et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS ONE 5, e8805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macagno, A. et al. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J. Virol. 84, 1005–1013 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010).

    CAS  PubMed  Google Scholar 

  31. Smith, S. A. et al. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J. Virol. 86, 2665–2675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schieffelin, J. S. et al. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient. Virol. J. 7, 28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl Acad. Sci. USA 109, 7439–7444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Alwis, R. et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl. Trop. Dis. 5, e1188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Warter, L. et al. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. J. Immunol. 186, 3258–3264 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Collarini, E. J. et al. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from B cells of infected patients. J. Immunol. 183, 6338–6345 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, X., McGraw, P. A., House, F. S. & Crowe, J. E. Jr. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J. Immunol. Methods 336, 142–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nature Med. 16, 123–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Wardemann, H. & Nussenzweig, M. C. B-cell self-tolerance in humans. Adv. Immunol. 95, 83–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Scheid, J. F. et al. Differential regulation of self-reactivity discriminates between IgG+ human circulating memory B cells and bone marrow plasma cells. Proc. Natl Acad. Sci. USA 108, 18044–18048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meffre, E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. NY Acad. Sci. 1246, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Isnardi, I. et al. Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duty, J. A. et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med. 206, 139–151 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smith, K. et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nature Protoc. 4, 372–384 (2009).

    Article  CAS  Google Scholar 

  46. Casali, P., Inghirami, G., Nakamura, M., Davies, T. F. & Notkins, A. L. Human monoclonals from antigen-specific selection of B lymphocytes and transformation by EBV. Science 234, 476–479 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Weitkamp, J. H. et al. Generation of recombinant human monoclonal antibodies to rotavirus from single antigen-specific B cells selected with fluorescent virus-like particles. J. Immunol. Methods 275, 223–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Scheid, J. F. et al. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343, 65–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Di Niro, R. et al. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J. Immunol. 185, 5377–5383 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Di Niro, R. et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nature Med. 18, 441–445 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011). This study describes the comprehensive isolation and characterization of broadly neutralizing HIV-specific antibody clonal families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mouquet, H. et al. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses. PLoS ONE 6, e24078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010). This paper describes the design of a probe containing conserved regions of gp120 to specifically detect and isolate rare broadly neutralizing antibodies specific for HIV using flow cytometry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whittle, J. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poulsen, T. R., Meijer, P. J., Jensen, A., Nielsen, L. S. & Andersen, P. S. Kinetic, affinity, and diversity limits of human polyclonal antibody responses against tetanus toxoid. J. Immunol. 179, 3841–3850 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Brokstad, K. A., Cox, R. J., Olofsson, J., Jonsson, R. & Haaheim, L. R. Parenteral influenza vaccination induces a rapid systemic and local immune response. J. Infect. Dis. 171, 198–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Sasaki, S. et al. Comparison of the influenza virus-specific effector and memory B-cell responses to immunization of children and adults with live attenuated or inactivated influenza virus vaccines. J. Virol. 81, 215–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008). In this study, the authors identified and described a method for using short-lived plasmablasts generated in response to influenza vaccination as a good source of naturally produced monoclonal antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011). Using human monoclonal antibody technologies, this study showed that with the appropriate immunogen an antibody response dominated by broadly neutralizing antibodies could indeed be induced in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meijer, P. J. et al. Isolation of human antibody repertoires with preservation of the natural heavy and light chain pairing. J. Mol. Biol. 358, 764–772 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Poulsen, T. R., Jensen, A., Haurum, J. S. & Andersen, P. S. Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J. Immunol. 187, 4229–4235 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Sasaki, S. et al. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J. Clin. Invest. 121, 3109–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moody, M. A. et al. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS ONE 6, e25797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reddy, S. T. & Georgiou, G. Systems analysis of adaptive immunity by utilization of high-throughput technologies. Curr. Opin. Biotechnol. 22, 584–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Krause, J. C. et al. Epitope-specific human influenza antibody repertoires diversify by B cell intraclonal sequence divergence and interclonal convergence. J. Immunol. 187, 3704–3711 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Cheung, W. C. et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nature Biotech. 30, 447–452 (2012).

    Article  CAS  Google Scholar 

  72. Kaur, K., Sullivan, M. & Wilson, P. C. Targeting B cell responses in universal influenza vaccine design. Trends Immunol. 32, 524–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Struct. Mol. Biol. 16, 265–273 (2009). References 74 and 75 are the first papers to determine the conserved epitope and crystal structure of a broadly neutralizing influenza-specific antibody in complex with viral haemagglutinin.

    Article  CAS  Google Scholar 

  76. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, R. et al. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328, 357–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomson, C. A. et al. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem. Front. Immunol. 3, 1–19 (2012).

    Article  Google Scholar 

  79. Li, G.-M. et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl Acad. Sci. USA 21 May 2012 (doi:10.1073/pnas.1118979109).

    Article  CAS  Google Scholar 

  80. McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nature Rev. Immunol. 10, 11–23 (2010).

    Article  CAS  Google Scholar 

  81. Pantophlet, R. & Burton, D. R. GP120: target for neutralizing HIV-1 antibodies. Annu. Rev. Immunol. 24, 739–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Moir, S., Malaspina, A. & Fauci, A. S. Prospects for an HIV vaccine: leading B cells down the right path. Nature Struct. Mol. Biol. 18, 1317–1321 (2011).

    Article  CAS  Google Scholar 

  83. Kwong, P. D. & Wilson, I. A. HIV-1 and influenza antibodies: seeing antigens in new ways. Nature Immunol. 10, 573–578 (2009).

    Article  CAS  Google Scholar 

  84. Simek, M. D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diskin, R. et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334, 1289–1293 (2011). By studying the structure of broadly neutralizing antibodies bound to gp120 isolated from an HIV-infected individual, the authors of this study were able to design an improved antibody in silico.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haynes, B. F., Kelsoe, G., Harrison, S. C. & Kepler, T. B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nature Biotech. 30, 423–433 (2012).

    Article  CAS  Google Scholar 

  89. Doria-Rose, N. A. et al. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83, 188–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Sather, D. N. et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757–769 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Mouquet, H. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467, 591–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Simmons, C. P. et al. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med. 4, e178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu, H. et al. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses. J. Virol. 86, 2978–2989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tian, C. et al. Immunodominance of the VH1-46 antibody gene segment in the primary repertoire of human rotavirus-specific B cells is reduced in the memory compartment through somatic mutation of nondominant clones. J. Immunol. 180, 3279–3288 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. Kaur and C. Dunand provided helpful suggestions. This work was funded in part by grants from the US National Institute of Allergy and Infectious Diseases, National Institutes of Health: 5U54AI057158-08 (to P.C.W.), 5U19AI057266-08 (to P.C.W.), 5U19AI082724-03 (to P.C.W.), 1U19AI090023-01 (to P.C.W.) and F32AI930872 (to S.F.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Patrick C. Wilson's homepage

Glossary

Hybridoma technology

Fusion of activated, antibody-secreting primary B cells with an immortalized myeloma cell line to produce long-living cell lines expressing antibodies of a single specificity.

Phage display libraries

Pools of bacteriophage virions, each expressing a unique protein variant (such as immunoglobulin fragments) on the virion exterior.

AID

(Activation-induced cytidine deaminase). A cytosine deaminase that catalyses a pivotal step in antibody gene-diversification reactions.

Reverse transcription PCR

(RT-PCR). A type of PCR in which RNA is first converted into double-stranded DNA, which is then amplified.

Next-generation sequencing

A massively parallel high-throughput non-Sanger method of sequencing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, P., Andrews, S. Tools to therapeutically harness the human antibody response. Nat Rev Immunol 12, 709–719 (2012). https://doi.org/10.1038/nri3285

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri3285

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology