Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Studying immunity to zoonotic diseases in the natural host — keeping it real

Key Points

  • Zoonotic viruses pose a serious threat to human and animal health. Studying the immune response to zoonotic pathogens in the natural reservoir hosts, rather than traditional animal models, offers important insights into control strategies.

  • Comparative studies in natural host systems have provided key information and improved our understanding of co-evolution of hosts and pathogens. This could lead to the discovery of novel immune mechanisms that control viral replication.

  • Understanding the differences between the immune systems of domesticated and wild animal hosts and comparing them to the human immune system is crucial for unravelling the complex disease mechanisms involved in zoonotic infections and for developing new strategies for disrupting their transmission to humans.

  • The use of non-traditional animal models for research poses many challenges. These include the need for specialist high-biosecurity containment facilities, a lack of species-specific reagents for immunology studies, and complex husbandry, ethics and welfare issues.

  • Whole-genome sequencing and comparative analysis of host species have provided key insights into how different immune responses are made to the same pathogen.

  • The identification of key differences in immune pathways between susceptible and non-susceptible hosts might offer clues for developing disease intervention strategies, including new antiviral vaccines and therapies, and disease-resistant animals.

Abstract

Zoonotic viruses that emerge from wildlife and domesticated animals pose a serious threat to human and animal health. In many instances, mouse models have improved our understanding of the human immune response to infection; however, when dealing with emerging zoonotic diseases, they may be of limited use. This is particularly the case when the model fails to reproduce the disease status that is seen in the natural reservoir, transmission species or human host. In this Review, we discuss how researchers are placing more emphasis on the study of the immune response to zoonotic infections in the natural reservoir hosts and spillover species. Such studies will not only lead to a greater understanding of how these infections induce variable disease and immune responses in distinct species but also offer important insights into the evolution of mammalian immune systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emergence of zoonoses.
Figure 2: The severity of emerging infectious diseases is influenced by the host–pathogen interaction.
Figure 3: The host immune response to an infection influences the disease outcome.
Figure 4: Positive selection of bat genes.

Similar content being viewed by others

References

  1. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Phil. Trans. R. Soc. Lond. B 356, 983–989 (2001).

    Article  CAS  Google Scholar 

  2. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008). This article reviews the drivers of emerging disease and how they are linked to the species-specific and temporal patterns of outbreaks worldwide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Legrand, N., Weijer, K. & Spits, H. Experimental models to study development and function of the human immune system in vivo. J. Immunol. 176, 2053–2058 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cooper, M. D. & Herrin, B. R. How did our complex immune system evolve? Nature Rev. Immunol. 10, 2–3 (2010).

    Article  CAS  Google Scholar 

  5. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Li, J. et al. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nature Immunol. 7, 1116–1124 (2006).

    Article  CAS  Google Scholar 

  8. Zhu, C. et al. Origin of immunoglobulin isotype switching. Curr. Biol. 22, 872–880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Criscitiello, M. F., Saltis, M. & Flajnik, M. F. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc. Natl Acad. Sci. USA 103, 5036–5041 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parra, Z. E. et al. A unique T cell receptor discovered in marsupials. Proc. Natl Acad. Sci. USA 104, 9776–9781 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parra, Z. E., Ohta, Y., Criscitiello, M. F., Flajnik, M. F. & Miller, R. D. The dynamic TCRδ: TCRδ chains in the amphibian Xenopus tropicalis utilize antibody-like V genes. Eur. J. Immunol. 40, 2319–2329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong, X. et al. Sugar-binding proteins from fish: selection of high affinity “lambodies” that recognize biomedically relevant glycans. ACS Chem. Biol. 8, 152–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L. F., Walker, P. J. & Poon, L. L. Mass extinctions, biodiversity and mitochondrial function: are bats 'special' as reservoirs for emerging viruses? Curr. Opin. Virol. 1, 649–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013). This paper shows how results from mouse models sometimes correlate poorly with those in humans, using acute inflammatory responses as examples.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 26, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004). This paper highlights numerous key differences in the immune systems of mice and humans.

    Article  CAS  PubMed  Google Scholar 

  19. Hein, W. R. & Griebel, P. J. A road less travelled: large animal models in immunological research. Nature Rev. Immunol. 3, 79–84 (2003).

    Article  CAS  Google Scholar 

  20. Le Douarin, N. M. & Dieterlen-Lievre, F. How studies on the avian embryo have opened new avenues in the understanding of development: a view about the neural and hematopoietic systems. Dev. Growth Differ. 55, 1–14 (2013).

    Article  PubMed  Google Scholar 

  21. Chen, C. L., Bucy, R. P. & Cooper, M. D. T cell differentiation in birds. Semin. Immunol. 2, 79–86 (1990).

    CAS  PubMed  Google Scholar 

  22. Glick, B., Chang, T. S. & Jaap, G. The bursa of Fabricius and antibody production. Poult. Sci. 35, 224–225 (1956).

    Article  Google Scholar 

  23. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  24. Waters, W. R. et al. Tuberculosis immunity: opportunities from studies with cattle. Clin. Dev. Immunol. 2011, 768542 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Belser, J. A., Katz, J. M. & Tumpey, T. M. The ferret as a model organism to study influenza A virus infection. Dis. Model. Mech. 4, 575–579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Menne, S. & Cote, P. J. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J. Gastroenterol. 13, 104–124 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belov, K. Contagious cancer: lessons from the devil and the dog. Bioessays 34, 285–292 (2012).

    Article  PubMed  Google Scholar 

  28. Clark, I. A. The advent of the cytokine storm. Immunol. Cell Biol. 85, 271–273 (2007). A review of the concept of cytokine storm and its potential role in disease pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, N. et al. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection. Clin. Infect. Dis. 45, 723–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Karpala, A. J. et al. Highly pathogenic (H5N1) avian influenza induces an inflammatory T helper type 1 cytokine response in the chicken. J. Interferon Cytokine Res. 31, 393–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Tisoncik, J. R. et al. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16–32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pantin-Jackwood, M. J. & Swayne, D. E. Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infections in ducks. Avian Dis. 51, 250–259 (2007).

    Article  PubMed  Google Scholar 

  33. Mahalingam, S. et al. Hendra virus: an emerging paramyxovirus in Australia. Lancet Infect. Dis. 12, 799–807 (2012). A comprehensive review of the Hendra virus.

    Article  PubMed  Google Scholar 

  34. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Meliopoulos, V. A. et al. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J. 26, 1372–1386 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013). A detailed analysis and comparison of two bat genomes that provides interesting discussion on the link between evolution of flight and immunity.

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Y. et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genet. 45, 776–783 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. The Bactrian Camels Genome Sequencing and Analysis Consortium. Genome sequences of wild and domestic bactrian camels. Nature Commun. 3, 1202 (2012).

  39. Pontius, J. U. et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 17, 1675–1689 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280, 20122753 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Papenfuss, A. T. et al. The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 13, 261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H. & Smith, G. L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 1, e00047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baker, M. L., Schountz, T. & Wang, L. F. Antiviral immune responses of bats: a review. Zoonoses Publ. Health 60, 104–116 (2013).

    Article  CAS  Google Scholar 

  44. Chahroudi, A., Bosinger, S. E., Vanderford, T. H., Paiardini, M. & Silvestri, G. Natural SIV hosts: showing AIDS the door. Science 335, 1188–1193 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Viney, M. E., Riley, E. M. & Buchanan, K. L. Optimal immune responses: immunocompetence revisited. Trends Ecol. Evol. 20, 665–669 (2005).

    Article  PubMed  Google Scholar 

  46. Schountz, T. et al. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc. Natl Acad. Sci. USA 104, 15496–15501 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Easterbrook, J. D. & Klein, S. L. Immunological mechanisms mediating hantavirus persistence in rodent reservoirs. PLoS Pathog. 4, e1000172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itoh, Y. et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460, 1021–1025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chowell, G. et al. Severe respiratory disease concurrent with the circulation of H1N1 influenza. N. Engl. J. Med. 361, 674–679 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Fisman, D. N. et al. Older age and a reduced likelihood of 2009 H1N1 virus infection. N. Engl. J. Med. 361, 2000–2001 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, Y. et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381, 1916–1925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Groot, A. S. et al. Low immunogenicity predicted for emerging avian-origin H7N9: Implication for influenza vaccine design. Hum. Vaccin. Immunother. 9, 950–956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. World Health Organization. Overview of the emergence and characteristics of the avian influenza A(H7N9) virus. World Health Organization [online], (2013).

  54. Perdue, M. L. & Swayne, D. E. Public health risk from avian influenza viruses. Avian Dis. 49, 317–327 (2005).

    Article  PubMed  Google Scholar 

  55. Barber, M. R., Aldridge, J. R. Jr, Webster, R. G. & Magor, K. E. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl Acad. Sci. USA 107, 5913–5918 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bedell, V. M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cade, L. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 40, 8001–8010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dahlem, T. J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotech. 31, 227–229 (2013).

    Article  CAS  Google Scholar 

  61. Carbery, I. D. et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mashimo, T. et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE 5, e8870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carlson, D. F. et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17382–17387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, H. et al. Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet 382, 138–145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Relman, D. A., Hamburg, M. A., Choffnes, E. R. & Mack, A. in Microbial Evolution and Co-Adaptation: A Tribute to the Life and Scientific Legacies of Joshua Lederberg Ch. 5, 193–272 (National Academies Press, 2009).

    Google Scholar 

  67. Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pulliam, J. R. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).

    Article  PubMed  Google Scholar 

  69. Swenson, S. L. et al. Natural cases of 2009 pandemic H1N1 Influenza A virus in pet ferrets. J. Vet. Diagn. Invest. 22, 784–788 (2010).

    Article  PubMed  Google Scholar 

  70. Reperant, L. A., Kuiken, T. & Osterhaus, A. D. Influenza viruses: from birds to humans. Hum. Vaccin Immunother. 8, 7–16 (2012). A comprehensive, updated review of cross-species transmission of avian inflenza viruses.

    Article  PubMed  Google Scholar 

  71. Tong, S. et al. A distinct lineage of influenza A virus from bats. Proc. Natl Acad. Sci. USA 109, 4269–4274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, Z. & Hu, Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. 133, 74–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Carver, S., Bestall, A., Jardine, A. & Ostfeld, R. S. Influence of hosts on the ecology of arboviral transmission: potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector Borne Zoonot. Dis. 9, 51–64 (2009).

    Article  Google Scholar 

  74. Clayton, B. A., Wang, L. F. & Marsh, G. A. Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission. Zoonoses Publ. Health 60, 69–83 (2013).

    Article  CAS  Google Scholar 

  75. Rupprecht, C. E., Turmelle, A. & Kuzmin, I. V. A perspective on lyssavirus emergence and perpetuation. Curr. Opin. Virol. 1, 662–670 (2011).

    Article  PubMed  Google Scholar 

  76. Hatz, C. F., Kuenzli, E. & Funk, M. Rabies: relevance, prevention, and management in travel medicine. Infect. Dis. Clin. North Am. 26, 739–753 (2012).

    Article  PubMed  Google Scholar 

  77. Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).

    Article  PubMed  Google Scholar 

  78. Tong, S. et al. Climate variability, social and environmental factors, and Ross River virus transmission: research development and future research needs. Environ. Health Perspect. 116, 1591–1597 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Lowenthal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Natural reservoir hosts and susceptible hosts involved in transmission of bacterial, prion, parasitic and other viral zoonotic diseases (PDF 167 kb)

Glossary

Variable lymphocyte receptors

Alternative forms of somatically diversified antigen receptors expressed by lymphocytes of jawless vertebrates. The combinatorial diversity of these receptors is based on variable numbers of leucine-rich repeat elements assembled by a gene-conversion process.

Bursa of Fabricius

A primary lymphoid organ that is only found in birds. B cells mature in this organ, and indeed were first observed and named after this site: the 'B' in B cell refers to 'bursa-derived'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bean, A., Baker, M., Stewart, C. et al. Studying immunity to zoonotic diseases in the natural host — keeping it real. Nat Rev Immunol 13, 851–861 (2013). https://doi.org/10.1038/nri3551

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri3551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing