Abstract
Vaccination, which is the most effective medical intervention that has ever been introduced, originated from the observation that individuals who survived a plague or smallpox would not get the disease twice. To mimic the protective effects of natural infection, Jenner — and later Pasteur — inoculated individuals with attenuated or killed disease-causing agents. This empirical approach inspired a century of vaccine development and the effective prophylaxis of many infectious diseases. From the 1980s, several waves of new technologies have enabled the development of novel vaccines that would not have been possible using the empirical approach. The technological revolution in the field of vaccination is now continuing, and it is delivering novel and safer vaccines. In this Timeline article, we provide our views on the transition from empiricism to rational vaccine design.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





References
van Panhuis, W. G. et al. Contagious diseases in the United States from 1888 to the present. N. Engl. J. Med. 369, 2152–2158 (2013).
World Health Organization. Global Vaccine Action Plan 2011-2020. (WHO, 2013).
Thucydides. The History of the Peloponnesian War (University of Chicago Press, 1989).
Needham, J. China and the origins of immunology. East Horiz. 19, 6–12 (1980).
Leung, A. K. in Vaccinia, Vaccination, Vaccinoiogy: Jenner, Pasteur and Their Successors (eds Plotkin, S. A. & Fantini, B.) 65–71 (Elsevier, 1996).
Blower, S. & Bernoulli, D. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 14, 275–288 (2004).
De Gregorio, E. et al. in Fundamental Immunology (ed. Paul W. E.) 1032–1068 (Lippicott Williams & Wilkins, 2013).
Jenner, E. An Inquiry into the Causes and Effects ofthe Variolae Vaccinae (Sampson Low, 1798).
Tognotti, E. The eradication of smallpox, a success story for modern medicine and public health: what lessons for the future? J. Infect. Dev. Ctries 4, 264–266 (2010).
Pasteur, L. De l'attenuation du virus du cholera des poules. C. R. Acad. Sci. Paris 91, 673–680 (in French) (1880).
Pasteur, L. Méthode pour prévenir la rage après morsure. C. R. Acad. Sci. Paris 101, 765–772 (in French) (1885).
von Behring, E. et al. Uber das zustandekommen der diphtherie-immunitat und der tetanus-immunitat bie tieren. Dtsch Med. Wochenschr. 16, 1113–1114 (in German) (1890).
Von Behring, E. Untersuchungen iiber das zustandekommen der diphterie-immunitat bei tieren. Dtsch Med. Wochenschr. 16, 1145–1148 (in German) (1890).
Calmette, A. & Guérin, C. Contribution à l'étude de l'immunité antituberculose chez les bovidés. Ann. Inst. Pasteur 28, 329–337 (in French) (1914).
Glenny, A. T. & Hopkins, B. E. Diphtheria toxoid as an immunising agent. Br. J. Exp. Pathol. 4, 283–288 (1923).
Ramon, G. Sur le pouvoir floculant et sur les propriétés immunisationes d'une toxine diphtérique rendue anatoxique (anatoxine). C R. Acad. Sci. Paris 177, 1338–1340 (in French) (1923).
Salk, J. E. et al. Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines. Am. J. Publ. Health Nat. Health 44, 563–570 (1954).
Sabin, A. B., Hennessen, W. A. & Winsser, J. Studies on variants of poliomyelitis virus. I. Experimental segregation and properties of avirulent variants of three immunologic types. J. Exp. Med. 99, 551–576 (1954).
Katz, S. L. et al. Studies on an attenuated measles-virus vaccine. VIII. General summary and evaluation of the results of vaccine. N. Engl. J. Med. 263, 180–184 (1960).
Hilleman, M. R. et al. Development and evaluation of the Moraten measles virus vaccine. JAMA 206, 587–590 (1968).
Hilleman, M. R., Buynak, E. B., Weibel, R. E. & Stokes, J. Jr. Live, attenuated mumps-virus vaccine. N. Engl. J. Med. 278, 227–232 (1968).
Plotkin, S. A., Farquhar, J. D., Katz, M. & Buser, F. Attenuation of RA 27–23 rubella virus in WI-38 human diploid cells. Am. J. Dis. Child 118, 178–185 (1969).
Weibel, R. E. et al. Live attenuated varicella virus vaccine. Efficacy trial in healthy children. N. Engl. J. Med. 310, 1409–1415 (1984).
Plotkin, S. A. New rotavirus vaccines. Pediatr. Infect. Dis. J. 25, 575–576 (2006).
Hall, C. B., Douglas, G. Jr & Fralonardo, S. A. Live attenuated influenza virus vaccine trial in children. Pediatrics 56, 991–998 (1975).
Goldschneider, I., Gotschlich, E. C. & Artenstein, M. S. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 129, 1307–1326 (1969).
Gotschlich, E. C., Liu, T. Y. & Artenstein, M. S. Human immunity to the meningococcus. 3. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J. Exp. Med. 129, 1349–1365 (1969).
Austrian, R. in Vaccinia, Vaccination, Vaccinology: Jenner, Pasteur, and Their Successors. (eds Plotkin, S. A. & Fantini, B.) 127–133 (Elsevier, 1996).
Austrian, R. et al. Prevention of pneumococcal pneumonia by vaccination. Trans. Assoc. Am. Physicians 89, 184–194 (1976).
Anderson, P. et al. Immunization of humans with polyribophosphate, the capsular antigen of Hemophilus influenzae, type b. J. Clin. Invest. 51, 39–44 (1972).
Avery, O. T. & Goebel, W. F. Chemo-immunological studies on conjugated carbohydrate-proteins: II. immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 50, 533–550 (1929).
Schneerson, R. et al. Haemophilus influenzae type B polysaccharide-protein conjugates: model for a new generation of capsular polysaccharide vaccines. Prog. Clin. Biol. Res. 47, 77–94 (1980).
Costantino, P. et al. Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10, 691–698 (1992).
Lakshman, R. et al. Safety of a new conjugate meningococcal C vaccine in infants. Arch. Dis. Child 85, 391–397 (2001).
Black, S. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J. 19, 187–195 (2000).
Pichichero, M. E. Meningococcal conjugate vaccines. Expert Opin. Biol. Ther. 5, 1475–1489 (2005).
Abdelnour, A. et al. Safety of a quadrivalent meningococcal serogroups A, C, W and Y conjugate vaccine (MenACWY-CRM) administered with routine infant vaccinations: results of an open-label, randomized, phase 3b controlled study in healthy infants. Vaccine 32, 965–972 (2014).
Plosker, G. L. 13-valent pneumococcal conjugate vaccine: a review of its use in infants, children, and adolescents. Paediatr. Drugs 15, 403–423 (2013).
Madhi, S. A. et al. Considerations for a phase-III trial to evaluate a group B Streptococcus polysaccharide-protein conjugate vaccine in pregnant women for the prevention of early- and late-onset invasive disease in young-infants. Vaccine 31 (Suppl. 4), D52–D57 (2013).
Lin, F. Y. et al. The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N. Engl. J. Med. 344, 1263–1269 (2001).
Bhutta, Z. A. et al. Immunogenicity and safety of the Vi-CRM197 conjugate vaccine against typhoid fever in adults, children, and infants in south and southeast Asia: results from two randomised, observer-blind, age de-escalation, phase 2 trials. Lancet Infect. Dis. 14, 119–129 (2013).
Rappuoli, R. & De Gregorio, E. A sweet T cell response. Nature Med. 17, 1551–1552 (2011).
Buynak, E. B. et al. Development and chimpanzee testing of a vaccine against human hepatitis B. Proc. Soc. Exp. Biol. Med. 151, 694–700 (1976).
Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G. & Hall, B. D. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298, 347–350 (1982).
Dahl-Hansen, E., Siebke, J. C., Froland, S. S. & Degré, M. Immunogenicity of yeast-derived hepatitis B vaccine from two different producers. Epidemiol. Infect. 104, 143–149 (1990).
Zhou, J., Sun, X. Y., Stenzel, D. J. & Frazer, I. H. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185, 251–257 (1991).
Lua, L. H. et al. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng. 111, 425–440 (2014).
Arai, H. & Sato, Y. Separation and characterization of two distinct hemagglutinins contained in purified leukocytosis-promoting factor from Bordetella pertussis. Biochim. Biophys. Acta 444, 765–782 (1976).
Sato, Y., Kimura, M. & Fukumi, H. Development of a pertussis component vaccine in Japan. Lancet 1, 122–126 (1984).
Hewlett, E. L. Pertussis: current concepts of pathogenesis and prevention. Pediatr. Infect. Dis. J. 16 (Suppl. 4), 78–84 (1997).
Pizza, M. et al. Mutants of pertussis toxin suitable for vaccine development. Science 246, 497–500 (1989).
Rappuoli, R. Rational design of vaccines. Nature Med. 3, 374–376 (1997).
Greco, D. et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N. Engl. J. Med. 334, 341–348 (1996).
Ashton, F. E., Ryan, J. A., Michon, F. & Jennings, H. J. Protective efficacy of mouse serum to the N-propionyl derivative of meningococcal group B polysaccharide. Microb. Pathog. 6, 455–458 (1989).
Ala'Aldeen, D. A. Transferrin receptors of Neisseria meningitidis promising candidates for a broadly cross-protective vaccine. J. Med. Microbiol. 44, 237–243 (1996).
Martin, D. et al. Candidate Neisseria meningitidis NspA vaccine. J. Biotechnol. 83, 27–31 (2000).
Holst, J. et al. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum. Vaccin. Immunother. 9, 1241–1253 (2013).
Tondella, M. L. et al. Distribution of Neisseria meningitidis serogroup B serosubtypes and serotypes circulating in the United States. The Active Bacterial Core Surveillance Team. J. Clin. Microbiol. 38, 3323–3328 (2000).
Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).
Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).
Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).
Princeton University. Emergency guidelines for the campus community: meningitis information. [online], (2014).
Rivera, C. UC Santa Barbara to offer meningitis vaccine to students. Los Angeles Times [online], (2014).
Etz, H. et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA 99, 6573–6578 (2002).
Maione, D. et al. Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309, 148–150 (2005).
Moriel, D. et al. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 107, 9072–9077 (2010).
Capo, S. et al. Chlamydia pneumoniae genome sequence analysis and identification of HLA-A2-restricted CD8+ T cell epitopes recognized by infection-primed T cells. Vaccine 23, 5028–5037 (2007).
Bertholet, S. et al. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J. Immunol. 181, 7948–7957 (2008).
Ross, B. C. et al. Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 19, 4135–4142 (2001).
Giefing, C. et al. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J. Exp. Med. 205, 117–131 (2007).
Bensi, G. et al. Multi high-throughput approach for highly selective identification of vaccine candidates: the group A streptococcus case. Mol. Cell. Proteomics 11, M111.015693 (2012).
Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 3, 445–450 (2000).
Sette, A. & Rappuoli, R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33, 530–541 (2010).
Dormitzer, P. R., Ulmer, J. B. & Rappuoli, R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 26, 659–667 (2008).
Scarselli, M. et al. Rational design of a meningococcal antigen inducing broad protective immunity. Sci. Transl. Med. 3, 91ra62 (2011).
McLellan, J. S. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).
In vaccine design, looks do matter [News]. Science 342, 1442–1443 (2013).
Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).
Dormitzer, P. R. et al. Synthetic generation of influenza vaccine viruses for rapid responses to pandemics. Sci. Transl. Med. 5, 185ra68 (2013).
Bart, S. A. A cell culture-derived MF59-adjuvanted pandemic A/H7N9 vaccine is immunogenic in adults. Sci. Transl. Med. 6, 234ra55 (2014).
Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012).
Hekele, A. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2, e52 (2013).
Mbow, M. L., De Gregorio, E., Valiante, N. M. & Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol. 22, 411–416 (2010).
Vesikari, T. et al. Oil-in-water emulsion adjuvant with influenza vaccine in young children. N. Engl. J. Med. 365, 1406–1416 (2011).
Garçon, N., Vaughan, D. W. & Didierlaurent, A. M. Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 11, 349–366 (2012).
Clegg, C. H. et al. Adjuvant solution for pandemic influenza vaccine. Proc. Natl Acad. Sci. USA 109, 17585–17590 (2012).
Garçon, N. et al. Development AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 25, 217–226 (2011).
RTS,S Clinical Trials Partnership. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367, 2284–2295 (2012).
Janssen, R. S. et al. Immunogenicity and safety of an investigational hepatitis B vaccine with a toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in patients with chronic kidney disease. Vaccine 31, 5306–5313 (2013).
Michael, A., Relph, K., Annels, N. & Pandha, H. Prostate cancer vaccines. Expert Rev. Vaccines 12, 253–262 (2013).
Ladjemi, M. Z. Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements. Front. Oncol. 2, 158 (2012).
Ulmer, J. B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).
Fitzgerald, D. W. et al. An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: results from a randomized placebo-controlled trial (the Step Study). J. Infect. Dis. 203, 765–772 (2011).
UNAIDS. Factsheet. [online], (2013).
The rgp120 HIV Vaccine Study Group. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–665 (2005).
Pitisuttithum, P. et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671 (2006).
Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).
Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).
Barouch, D. H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).
World Health Organization. Global tuberculosis report 2013. (WHO, 2013).
AERAS. Crucell Ad35/MVA85A. [online], (2014).
World Health Organization. World Malaria Day, 25 April 2014. Invest in the future. Defeat malaria. [online], (2014).
Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).
Rappuoli, R. & Aderem, A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473, 463–469 (2011).
Mosca, F. et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA 105, 10501–10506 (2008).
Querec, T. D. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol. 10, 116–125 (2009).
Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205, 3119–3131 (2008).
Ravindran, R. et al. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343, 313–317 (2014).
Li, S. et al. Molecular signatures of antibody responses derived froma systems biology study of five human vaccines. Nature Immunol. 15, 195–204 (2014).
Tsang, J. S. et al. Global analyses of human immune variation reveal baseline predictors of postvaccination. Cell 157, 499–513 (2014).
Rappuoli, R. & Dormitzer, P. R. Influenza: options to improve pandemic preparation. Science 336, 1531–1533 (2012).
Centers for Disease Control and Prevention. Updated CDC Estimates of 2009 H1N1 Influenza Cases, Hospitalizations and Deaths in the United States, April 2009 – April 10, 2010. [online], (2010).
Centers for Disease Control and Prevention. FluView. A weekly influenza surveillance report prepared by the Influenza Division. [online]
Acknowledgements
The authors' work is supported by the Advanced Immunization Technologies (ADITEC) grant from the European Commission of the Seventh Framework Program (grant number 280873). The work cited in the main text as “E.D.G. and colleagues, unpublished observations” has been submitted for publication by the following authors: T. Y.-H. Wu, M. Singh, A. T. Miller, E.D.G., F. Doro, U. D'Oro, D. Skibinskib, M. Lamine Mbow, S. Bufali, A. Hermanc, A. Cortezc, Y. Lic, B. P. Nayak, E. Trittob, C. M. Filippi, G. R. Otten, L. A. Britoa, E. Monacib, C. Lic, S. Aprea, S. Valentinib, S. Calabró, D. Laera, B. Brunelli, E. Caproni, D. T. O'Hagan, M. P. Cooke and N. M. Valiante.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Ennio De Gregorio and Rino Rappuoli are full-time employees and shareholders of Novartis Vaccines. The following products are commercialized by Novartis or are in the pipeline of Novartis Vaccines: MF59 adjuvant; TLR7-based adjuvants; vaccines against Haemophilus influenzae, meningococcus serogroups B, C and ACYW, influenza virus, pertussis, respiratory syncytial virus, and group A and group B streptococcus; and RNA vaccines based on self-amplifying mRNA (SAM).
Related links
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
De Gregorio, E., Rappuoli, R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol 14, 505–514 (2014). https://doi.org/10.1038/nri3694
Published:
Issue date:
DOI: https://doi.org/10.1038/nri3694
This article is cited by
-
Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection
Nano Research (2022)
-
Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology
Scientific Reports (2020)
-
Nanotechnology in the arena of cancer immunotherapy
Archives of Pharmacal Research (2020)
-
Is it dead or alive? TLR8 can tell
Nature Immunology (2018)
-
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology
Journal of the Indian Institute of Science (2018)