Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Dendritic cell-targeted vaccines — hope or hype?

Abstract

The development of an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer is a challenge. One strategy to enhance the effectiveness of vaccination is by targeting dendritic cells (DCs). In this Opinion article, we discuss existing DC-targeting approaches that induce adaptive immunity. We highlight the crucial issues that need to be addressed to move the field forward and discuss whether targeting DCs could be better than current vaccine approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen presentation and intracellular routing.

Similar content being viewed by others

References

  1. Plotkin, S. A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  PubMed  Google Scholar 

  2. Tomaras, G. D. & Haynes, B. F. Advancing toward HIV-1 vaccine efficacy through the intersections of immune correlates. Vaccines 2, 15–35 (2014).

    Article  PubMed  Google Scholar 

  3. de Souza, J. B. Protective immunity against malaria after vaccination. Parasite Immunol. 36, 131–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Andersen, P. & Woodworth, J. S. Tuberculosis vaccines — rethinking the current paradigm. Trends Immunol. 35, 387–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Schuler, G., Schuler-Thurner, B. & Steinman, R. M. The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nature Rev. Cancer 12, 265–277 (2012).

    Article  CAS  Google Scholar 

  8. Palucka, A. K. et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. 29, 545–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Frankenberger, B. & Schendel, D. J. Third generation dendritic cell vaccines for tumor immunotherapy. Eur. J. Cell Biol. 91, 53–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Wimmers, F., Schreibelt, G., Skold, A. E., Figdor, C. G. & De Vries, I. J. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5, 165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163–170 (2005).

    Article  Google Scholar 

  13. Wong, P. & Pamer, E. G. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 21, 29–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Reed, S. G., Bertholet, S., Coler, R. N. & Friede, M. New horizons in adjuvants for vaccine development. Trends Immunol. 30, 23–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, H. J. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nature Biotechnol. 18, 509–514 (2000).

    Article  CAS  Google Scholar 

  17. Tighe, H. et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol. 30, 1939–1947 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Tighe, H. et al. Conjugation of immunostimulatory DNA to the short ragweed allergen Amb a 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin. Immunol. 106, 124–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wille-Reece, U., Wu, C.-Y., Flynn, B. J., Kedl, R. M. & Seder, R. A. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol. 174, 7676–7683 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kastenmüller, K. et al. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J. Clin. Invest. 121, 1782–1796 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wille-Reece, U. et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA 102, 15190–15194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Snider, D. P. & Segal, D. M. Targeted antigen presentation using crosslinked antibody heteroaggregates. J. Immunol. 139, 1609–1616 (1987).

    CAS  PubMed  Google Scholar 

  23. Carayanniotis, G. & Barber, B. H. Adjuvant-free IgG responses induced with antigen coupled to antibodies against class II MHC. Nature 327, 59–61 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Frleta, D., Demian, D. & Wade, W. F. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo. Int. Immunopharmacol. 1, 265–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Tewari, K. et al. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates. Vaccine 28, 7256–7266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1283–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joffre, O. P., Sancho, D., Zelenay, S., Keller, A. M. & Reis e Sousa, C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol. 40, 1255–1265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mascarell, L. et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 24, 3490–3499 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Mascarell, L., Fayolle, C., Bauche, C., Ladant, D. & Leclerc, C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J. Virol. 79, 9872–9884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Idoyaga, J. et al. Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol. 180, 3647–3650 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Idoyaga, J. et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl Acad. Sci. USA 108, 2384–2389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Idoyaga, J. et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123, 844–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lahoud, M. H. et al. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187, 842–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Castro, F. V. V. et al. CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. Eur. J. Immunol. 38, 2263–2273 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. White, A. L. et al. Ligation of CD11c during vaccination promotes germinal centre induction and robust humoral responses without adjuvant. Immunology 131, 141–151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Montfoort, N. et al. Circulating specific antibodies enhance systemic cross-priming by delivery of complexed antigen to dendritic cells in vivo. Eur. J. Immunol. 42, 598–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Chatterjee, B. et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 120, 2011–2020 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Cohn, L. et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J. Exp. Med. 210, 1049–1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, D. et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209, 109–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valladeau, J. et al. Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J. Immunol. 167, 5767–5774 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Kreutz, M., Tacken, P. J. & Figdor, C. G. Targeting dendritic cells—why bother? Blood 121, 2836–2844 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Flynn, B. J. et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proc. Natl Acad. Sci. USA 108, 7131–7136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Segura, E. & Amigorena, S. Cross-presentation by human dendritic cell subsets. Immunol. Lett. 158, 73–78 (2013).

    Article  PubMed  Google Scholar 

  49. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A. & Kurts, C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer 12, 252–264 (2012).

    Article  CAS  Google Scholar 

  59. Heit, A. et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol. 170, 2802–2805 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Horner, A. A. et al. Immunostimulatory DNA-based vaccines elicit multifaceted immune responses against HIV at systemic and mucosal sites. J. Immunol. 167, 1584–1591 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Heit, A. et al. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J. Immunol. 174, 4373–4380 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Heit, A. et al. Circumvention of regulatory CD4+ T cell activity during cross-priming strongly enhances T cell-mediated immunity. Eur. J. Immunol. 38, 1585–1597 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Huleatt, J. W. et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 25, 763–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, B. et al. A Toll-like receptor-2-directed fusion protein vaccine against tuberculosis. Clin. Vaccine Immunol. 14, 902–906 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jackson, D. C. et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 101, 15440–15445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tel, J. et al. DEC-205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. Eur. J. Immunol. 41, 1014–1023 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Tel, J. et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J. Immunol. 191, 5005–5012 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Moffat, J. M. et al. Targeting antigen to bone marrow stromal cell-2 expressed by conventional and plasmacytoid dendritic cells elicits efficient antigen presentation. Eur. J. Immunol. 43, 595–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Dong, H. et al. Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells. Mucosal Immunol. 6, 522–534 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W.K. and C.K. are members of the Deutsche Forschungsgemeinschaft Excellence Cluster ImmunoSensation in Bonn, Germany, and are supported by grant SFB704. W.K. is supported by the NRW-Rückkehrerprogramm of the German state of Northrhine-Westfalia. The authors thank G. Gasteiger, N. Garbi and their laboratory members for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Kastenmüller or Robert A. Seder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Targeted Vaccines (PDF 719 kb)

PowerPoint slides

Glossary

Adjuvants

Agents that are mixed with an antigen to increase the immune response to that antigen following immunization.

Conjugate vaccines

Vaccines that consist of an antigen and an adjuvant that are physically linked to allow for synchronous delivery of both components.

Cross-presentation

MHC class I antigen presentation of antigens that are not synthesized in the cytosol of a cell.

C-type lectins

Receptors that bind carbohydrates in a calcium-dependent manner. They can be classified on the basis of their signalling properties, which also influence the cellular routing of the internalized receptor and subsequent antigen presentation of the bound cargo.

Fcγ receptors

(FcγRs). Receptors that specifically bind to the crystallizable, non-antigen-binding part of IgG antibodies. Binding via FcγRs typically leads to internalization of the receptor and activation of the cell, thus enhancing phagocytosis and pathogen elimination.

Integrins

Transmembrane receptors that mediate attachments between cells or between cells and their surroundings — for example. the extracellular matrix or blood vessels.

Pattern recognition receptor

(PRR). A protein that is expressed by innate immune cells that detects molecules associated with microbial pathogens or cellular stress.

Toll-like receptor

(TLR). An evolutionarily conserved pattern recognition receptor. These molecules are located intracellularly and also at the cell surface of macrophages, dendritic cells, B cells and intestinal epithelial cells. Their natural ligands are conserved molecular patterns — known as pathogen-associated molecular patterns — which are found in bacteria, viruses and fungi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastenmüller, W., Kastenmüller, K., Kurts, C. et al. Dendritic cell-targeted vaccines — hope or hype?. Nat Rev Immunol 14, 705–711 (2014). https://doi.org/10.1038/nri3727

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri3727

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology