Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of susceptibility and resistance to Leishmania major in mice

Key Points

  • The early production of interleukin-4 (IL-4) by an oligoclonal population of CD4+ T cells that recognize the Leishmania antigen LACK (Leishmania homologue of receptors for activated C kinase) is responsible, at least in part, for T helper 2 (TH2)-cell polarization and susceptibility to L. major infection in BALB/c mice.

  • As an early IL-4 response, including production by LACK-reactive cells, has been a relatively consistent finding in L. major-resistant mouse strains also, the ability to redirect an early TH2 response seems to be the most probable determinant of resistance in the mouse model.

  • On the basis of studies in anti-IL-12 antibody-treated or IL-12-knockout resistant-background mice, and in BALB/c mice treated with IL-12 at the time of challenge, it seems that the onset of IL-12 production by dendritic cells (DCs) is key to the redirection of the T-cell response and the development of acquired resistance.

  • Selective loss of IL-12 signalling owing to downregulated expression of the IL-12 receptor β2-chain has been proposed to explain the inability of BALB/c mice to over-ride the early TH2 response. Alternatively, owing to the rapid dissemination of parasites to the viscera in BALB/c mice, distinct populations of DCs with a preferential capacity to prime TH2 cells in these tissues might be involved in maintaining TH2 responses during infection.

  • Under some circumstances — for example, with particular L. major substrains — IL-4 and/or IL-4-receptor signalling are not required to promote TH2-cell development and susceptibility in BALB/c mice. IL-13, transforming growth factor-β and, in particular, IL-10 have each been shown to inhibit the generation or expression of L. major-specific immunity, and regardless of parasite substrain, ablation of the activity of many type-2 cytokines confers greater resistance than the ablation of just one, including IL-4.

  • More-natural models of L. major infection, involving low-dose inoculation of the skin, have revealed a requirement for CD8+ T cells for primary immunity in resistant mice. The maintenance of immunity in healed mice requires persistent antigen and IL-12 production, which provides a rationale for DNA vaccines or live, attenuated vaccines to confer long-lasting protection.

  • The persistence of L. major after healing in resistant mice was shown to be controlled by IL-10 produced by CD4+CD25+CD45RBlow regulatory T cells, which draws a link with the IL-4- and IL-10-producing CD4+CD45RBlow T-cell subset that was shown to suppress L. major immunity in BALB/c mice. Susceptibility, therefore, might not be due to a TH2 bias per se, but to an imbalance in the number of regulatory T cells that are activated during infection in BALB/c mice.

Abstract

Established models of T-helper-2-cell dominance in BALB/c mice infected with Leishmania major — involving the early production of interleukin-4 by a small subset of Leishmania-specific CD4+ T cells — have been refined by accumulating evidence that this response is not sufficient and, under some circumstances, not required to promote susceptibility. In addition, more recent studies in L. major-resistant mice have revealed complexities in the mechanisms responsible for acquired immunity, which necessitate the redesign of vaccines against Leishmania and other pathogens that require sustained cell-mediated immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of Leishmania major infection.
Figure 2: The genetics of resistance to Leishmania major.
Figure 3: Model of TH1-/TH2-cell development.
Figure 4: Early events in susceptible and resistant mice.
Figure 5: Late events in susceptible mice.
Figure 6: Late events in resistant mice.

Similar content being viewed by others

References

  1. Sadick, M. D. et al. Cure of murine leishmaniasis with anti-interleukin-4 monoclonal antibody. Evidence for a T-cell-dependent, interferon-γ-independent mechanism. J. Exp. Med. 171, 115–127 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Chatelain, R., Varkila, K. & Coffman, R. L. IL-4 induces a TH2 response in Leishmania major-infected mice. J. Immunol. 148, 1182–1187 (1992).

    CAS  PubMed  Google Scholar 

  3. Kopf, M. et al. IL-4-deficient BALB/c mice resist infection with Leishmania major. J. Exp. Med. 184, 1127–1136 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Mohrs, M. et al. Differences between IL-4- and IL-4 receptor α-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162, 7302–7308 (1999).References 1–4 provide strong evidence that the production of IL-4 is essential for susceptibility to Leishmania major.

    CAS  PubMed  Google Scholar 

  5. Launois, P. et al. IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells instructs TH2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6, 541–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Himmelrich, H. et al. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct TH2-cell development resulting in progressive disease. J. Immunol. 164, 4819–4825 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Julia, V., Rassoulzadegan, M. & Glaichenhaus, N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 274, 421–423 (1996).References 5–7 make the strong case that early IL-4 production by LACK-reactive cells controls susceptibility to L. major.

    Article  CAS  PubMed  Google Scholar 

  8. Malherbe, L. et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13, 771–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Shankar, A. H. & Titus, R. G. T-cell and non-T-cell compartments can independently determine resistance to Leishmania major. J. Exp. Med. 181, 845–855 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Reiner, S. L., Wang, Z. E., Hatam, F., Scott, P. & Locksley, R. M. TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 259, 1457–1460 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Julia, V. & Glaichenhaus, N. CD4+ T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infect. Immun. 67, 3641–3644 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stetson, D. B., Mohrs, M., Mattlet-Designe, V., Teyton, L. & Locksley, R. M. Rapid expansion and IL-4 expression by Leishmania-specific naive helper T cells in vivo. Immunity 17, 191–200 (2002).A convincing demonstration that early IL-4 production by LACK-reactive cells occurs in both susceptible and resistant mouse strains.

    Article  CAS  PubMed  Google Scholar 

  13. Morris, L., Troutt, A. B., Handman, E. & Kelso, A. Changes in the precursor frequencies of IL-4 and IFN-γ-secreting CD4+ cells correlate with resolution of lesions in murine cutaneous leishmaniasis. J. Immunol. 149, 2715–2721 (1992).

    CAS  PubMed  Google Scholar 

  14. Belkaid, Y. et al. A natural model of Leishmania major infection reveals a prolonged 'silent' phase of parasite amplification in the skin before the onset of lesion formation and immunity. J. Immunol. 165, 969–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Reiner, S. L., Zheng, S., Wang, Z. E., Stowring, L. & Locksley, R. M. Leishmania promastigotes evade interleukin-12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179, 447–456 (1994).A thorough demonstration that L. major promastigotes behave as 'stealth' parasites in infected macrophages.

    Article  CAS  PubMed  Google Scholar 

  16. Scott, P., Eaton, A., Gause, W. C., di Zhou, X. & Hondowicz, B. Early IL-4 production does not predict susceptibility to Leishmania major. Exp. Parasitol. 84, 178–187 (1996).Early evidence that a rapid IL-4 response occurs in resistant, as well as susceptible, mice.

    Article  PubMed  Google Scholar 

  17. Heinzel, F. P., Rerko, R. M., Ahmed, F. & Pearlman, E. Endogenous IL-12 is required for control of TH2 cytokine responses capable of exacerbating leishmaniasis in normally resistant mice. J. Immunol. 155, 730–739 (1995).

    CAS  PubMed  Google Scholar 

  18. Hondowicz, B. D., Scharton-Kersten, T. M., Jones, D. E. & Scott, P. Leishmania major-infected C3H mice treated with anti-IL-12 mAb develop but do not maintain a TH2 response. J. Immunol. 159, 5024–5031 (1997).

    CAS  PubMed  Google Scholar 

  19. Erb, K. J., Blank, C. & Moll, H. Susceptibility to Leishmania major in IL-4-transgenic mice is not correlated with the lack of a TH1 immune response. Immunol. Cell. Biol. 74, 239–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Leal, L. M., Moss, D. W., Kuhn, R., Muller, W. & Liew, F. Y. Interleukin-4-transgenic mice of resistant background are susceptible to Leishmania major infection. Eur. J. Immunol. 23, 566–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Groux, H. et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723–1729 (1999).

    CAS  PubMed  Google Scholar 

  22. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R. L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).A demonstration that L. major -specific T H 1 effector cells can be recovered from infected BALB/c mice and that they are suppressed by CD4+ T cells that are a subset of an immunoregulatory population that can suppress colitis also.

    Article  CAS  PubMed  Google Scholar 

  23. Bogdan, C., Rollinghoff, M. & Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. & Gately, M. K. Recombinant interleukin-12 cures mice infected with Leishmania major. J. Exp. Med. 177, 1505–1509 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).References 24 and 25 were the first to show the role of IL-12 in initiating a T H 1 response and resistance to L. major.

    Article  CAS  PubMed  Google Scholar 

  26. Mattner, F. et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized TH2 cell response. Eur. J. Immunol. 26, 1553–1559 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Hondowicz, B. D., Park, A. Y., Elloso, M. M. & Scott, P. Maintenance of IL-12-responsive CD4+ T cells during a TH2 response in Leishmania major-infected mice. Eur. J. Immunol. 30, 2007–2014 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Himmelrich, H., Parra-Lopez, C., Tacchini-Cottier, F., Louis, J. A. & Launois, P. The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major down-regulates IL-12 receptor β2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J. Immunol. 161, 6156–6163 (1998).

    CAS  PubMed  Google Scholar 

  29. Guler, M. L. et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 271, 984–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Nishikomori, R., Gurunathan, S., Nishikomori, K. & Strober, W. BALB/c mice bearing a transgenic IL-12 receptor-β2 gene exhibit a nonhealing phenotype to Leishmania major infection despite intact IL-12 signaling. J. Immunol. 166, 6776–6783 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Beil, W. J., Meinardus-Hager, G., Neugebauer, D. C. & Sorg, C. Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice. J. Leukocyte Biol. 52, 135–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Tacchini-Cottier, F. et al. An immunomodulatory function for neutrophils during the induction of a CD4+ TH2 response in BALB/c mice infected with Leishmania major. J. Immunol. 165, 2628–2636 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Laskay, T., Diefenbach, A., Rollinghoff, M. & Solbach, W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur. J. Immunol. 25, 2220–2227 (1995).The first demonstration that L. major promastigotes disseminate rapidly to the viscera in BALB/c mice, but not in resistant mice.

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita, T. et al. CD4+ and/or γδ+ T cells in the liver spontaneously produce IL-4 in vitro during the early phase of Leishmania major infection in susceptible BALB/c mice. Acta Trop. 73, 109–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Nabors, G. S., Nolan, T., Croop, W., Li, J. & Farrell, J. P. The influence of the site of parasite inoculation on the development of TH1- and TH2-type immune responses in (BALB/c × C57BL/6) F1 mice infected with Leishmania major. Parasite Immunol. 17, 569–579 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Constant, S. L., Lee, K. S. & Bottomly, K. Site of antigen delivery can influence T-cell priming: pulmonary environment promotes preferential TH2-type differentiation. Eur. J. Immunol. 30, 840–847 (2000).A clear demonstration that the tissue site of parasite delivery can influence the class of effector cell that is induced.

    Article  CAS  PubMed  Google Scholar 

  37. Khanna, A. et al. Effects of liver-derived dendritic-cell progenitors on TH1- and TH2-like cytokine responses in vitro and in vivo. J. Immunol. 164, 1346–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Saha, B., Chattopadhyay, S., Germond, R., Harlan, D. M. & Perrin, P. J. CTLA4 (CD152) modulates the TH-subset response and alters the course of experimental Leishmania major infection. Eur. J. Immunol. 28, 4213–4220 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Corry, D. B., Reiner, S. L., Linsley, P. S. & Locksley, R. M. Differential effects of blockade of CD28–B7 on the development of TH1 or TH2 effector cells in experimental leishmaniasis. J. Immunol. 153, 4142–4148 (1994).

    CAS  PubMed  Google Scholar 

  41. Brown, J. A., Titus, R. G., Nabavi, N. & Glimcher, L. H. Blockade of CD86 ameliorates Leishmania major infection by down-regulating the TH2 response. J. Infect. Dis. 174, 1303–1308 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. von Stebut, E. et al. Leishmania major-infected murine Langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur. J. Immunol. 30, 3498–3506 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bretscher, P. A., Wei, G., Menon, J. N. & Bielefeldt-Ohmann, H. Establishment of stable, cell-mediated immunity that makes 'susceptible' mice resistant to Leishmania major. Science 257, 539–542 (1992).Strong evidence that parasite dose can influence the effector class.

    Article  CAS  PubMed  Google Scholar 

  45. Howard, J. G., Nicklin, S., Hale, C. & Liew, F. Y. Prophylactic immunization against experimental leishmaniasis. I. Protection induced in mice genetically vulnerable to fatal Leishmania tropica infection. J. Immunol. 129, 2206–2212 (1982).

    CAS  PubMed  Google Scholar 

  46. Aebischer, T., Morris, L. & Handman, E. Intravenous injection of irradiated Leishmania major into susceptible BALB/c mice: immunization or protective tolerance. Int. Immunol. 6, 1535–1543 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Beebe, A. M., Mauze, S., Schork, N. J. & Coffman, R. L. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 6, 551–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Lipoldova, M. et al. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 1, 200–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Noben-Trauth, N., Paul, W. E. & Sacks, D. L. IL-4- and IL-4-receptor-deficient BALB/c mice reveal differences in susceptibility to Leishmania major parasite substrains. J. Immunol. 162, 6132–6140 (1999).

    CAS  PubMed  Google Scholar 

  50. Matthews, D. J. et al. IL-13 is a susceptibility factor for Leishmania major infection. J. Immunol. 164, 1458–1462 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Noben-Trauth, N., Kropf, P. & Muller, I. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271, 987–990 (1996).The first serious challenge to the established model regarding the role of IL-4 in susceptibility to L. major.

    Article  CAS  PubMed  Google Scholar 

  52. Kropf, P. et al. Expression of TH2 cytokines and the stable TH2 marker ST2L in the absence of IL-4 during Leishmania major infection. Eur. J. Immunol. 29, 3621–3628 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Li, J., Hunter, C. A. & Farrell, J. P. Anti-TGF-β treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J. Immunol. 162, 974–979 (1999).

    CAS  PubMed  Google Scholar 

  54. Gorelik, L., Constant, S. L. & Flavell, R. A. Mechanism of transforming growth factor-β-induced inhibition of T helper type I differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chatelain, R., Mauze, S. & Coffman, R. L. Experimental Leishmania major infection in mice: role of IL-10. Parasite Immunol. 21, 211–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Yamakami, K. et al. Administration of plasmids expressing interleukin-4 and interleukin-10 causes BALB/c mice to induce a T helper 2-type response, despite the expected T helper 1-type response, with a low-dose infection of Leishmania major. Immunology 105, 515–523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kane, M. M. & Mosser, D. M. The role of IL-10 in promoting disease progression in leishmaniasis. J. Immunol. 166, 1141–1147 (2001).A clear demonstration that IL-10 contributes to susceptibility to L. major in BALB/c mice.

    Article  CAS  PubMed  Google Scholar 

  58. Kropf, P. et al. Characterization of T-cell-mediated responses in nonhealing and healing Leishmania major infections in the absence of endogenous IL-4. J. Immunol. 159, 3434–3443 (1997).

    CAS  PubMed  Google Scholar 

  59. Shevach, E. M. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 193, F41–F46 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohrs, M., Holscher, C. & Brombacher, F. Interleukin-4 receptor α-deficient BALB/c mice show an unimpaired T helper 2 polarization in response to Leishmania major infection. Infect. Immun. 68, 1773–1780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Melby, P. C. et al. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect. Immun. 62, 837–842 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Karp, C. L. et al. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-γ. J. Clin. Invest. 91, 1644–1648 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gasim, S. et al. High levels of plasma IL-10 and expression of IL-10 by keratinocytes during visceral leishmaniasis predict subsequent development of post-kala-azar dermal leishmaniasis. Clin. Exp. Immunol. 111, 64–69 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Z. E., Reiner, S. L., Zheng, S., Dalton, D. K. & Locksley, R. M. CD4+ effector cells default to the TH2 pathway in interferon-γ-deficient mice infected with Leishmania major. J. Exp. Med. 179, 1367–1371 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Campbell, K. A. et al. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 4, 283–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Kamanaka, M. et al. Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4, 275–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Swihart, K. et al. Mice from a genetically resistant background lacking the interferon-γ receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T-cell response. J. Exp. Med. 181, 961–971 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Stamm, L. M., Satoskar, A. A., Ghosh, S. K., David, J. R. & Satoskar, A. R. STAT-4-mediated IL-12 signaling pathway is critical for the development of protective immunity in cutaneous leishmaniasis. Eur. J. Immunol. 29, 2524–2529 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Monteforte, G. M. et al. Genetically resistant mice lacking IL-18 gene develop TH1 response and control cutaneous Leishmania major infection. J. Immunol. 164, 5890–5893 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Wei, X. et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163, 2821–2828 (1999).

    CAS  PubMed  Google Scholar 

  72. Yoshida, H. et al. WSX-1 is required for the initiation of TH1 responses and resistance to L. major infection. Immunity 15, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Park, A. Y., Hondowicz, B. D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol. 165, 896–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Stobie, L. et al. The role of antigen and IL-12 in sustaining TH1 memory cells in vivo: IL-12 is required to maintain memory/effector TH1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl Acad. Sci. USA 97, 8427–8432 (2000).References 73 and 74 show the requirement for sustained IL-12 production to maintain T H 1 effector cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park, A. Y. & Scott, P. IL-12: keeping cell-mediated immunity alive. Scand. J. Immunol. 53, 529–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Carrera, L. et al. Leishmania promastigotes selectively inhibit interleukin-12 induction in bone-marrow-derived macrophages from susceptible and resistant mice. J. Exp. Med. 183, 515–526 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Sartori, A., Oliveira, M. A., Scott, P. & Trinchieri, G. Metacyclogenesis modulates the ability of Leishmania promastigotes to induce IL-12 production in human mononuclear cells. J. Immunol. 159, 2849–2857 (1997).

    CAS  PubMed  Google Scholar 

  78. Blank, C., Fuchs, H., Rappersberger, K., Rollinghoff, M. & Moll, H. Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J. Infect. Dis. 167, 418–425 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. von Stebut, E., Belkaid, Y., Jakob, T., Sacks, D. L. & Udey, M. C. Uptake of Leishmania major amastigotes results in activation and interleukin-12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188, 1547–1552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Konecny, P. et al. Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T-cell proliferation in vitro. Eur. J. Immunol. 29, 1803–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Moll, H. & Flohe, S. Dendritic cells induce immunity to cutaneous leishmaniasis in mice. Adv. Exp. Med. Biol. 417, 541–545 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Moll, H., Fuchs, H., Blank, C. & Rollinghoff, M. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol. 23, 1595–1601 (1993).Part of an early series of papers from this group showing the role of dendritic cells in T-cell priming.

    Article  CAS  PubMed  Google Scholar 

  83. Sato, N. et al. CC-chemokine receptor (CCR)2 is required for Langerhans cell migration and localization of T helper cell type 1 (TH1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by TH2 cytokines, B-cell outgrowth and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon-γ that drives differentiation of CD4+ T-cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Wakil, A. E., Wang, Z. E., Ryan, J. C., Fowell, D. J. & Locksley, R. M. Interferon-γ derived from CD4+ T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188, 1651–1656 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Satoskar, A. R. et al. Mice lacking NK cells develop an efficient TH1 response and control cutaneous Leishmania major infection. J. Immunol. 162, 6747–6754 (1999).

    CAS  PubMed  Google Scholar 

  87. Bogdan, C., Moll, H., Solbach, W. & Rollinghoff, M. Tumor necrosis factor-α in combination with interferon-γ, but not with interleukin-4, activates murine macrophages for elimination of Leishmania major amastigotes. Eur. J. Immunol. 20, 1131–1135 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Wei, X. Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Wilhelm, P. et al. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J. Immunol. 166, 4012–4019 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Nashleanas, M., Kanaly, S. & Scott, P. Control of Leishmania major infection in mice lacking TNF receptors. J. Immunol. 160, 5506–5513 (1998).

    CAS  PubMed  Google Scholar 

  91. Huang, F. P. et al. Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong TH1 responses and enhanced nitric oxide production. J. Immunol. 160, 4143–4147 (1998).

    CAS  PubMed  Google Scholar 

  92. Conceicao-Silva, F., Hahne, M., Schroter, M., Louis, J. & Tschopp, J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur. J. Immunol. 28, 237–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Chakkalath, H. R. et al. Class II major histocompatibility complex-deficient mice initially control an infection with Leishmania major but succumb to the disease. J. Infect. Dis. 171, 1302–1308 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Erb, K., Blank, C., Ritter, U., Bluethmann, H. & Moll, H. Leishmania major infection in major histocompatibility complex class II-deficient mice: CD8+ T cells do not mediate a protective immune response. Immunobiology 195, 243–260 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Muller, I. Role of T-cell subsets during the recall of immunologic memory to Leishmania major. Eur. J. Immunol. 22, 3063–3069 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Huber, M., Timms, E., Mak, T. W., Rollinghoff, M. & Lohoff, M. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect. Immun. 66, 3968–3970 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Titus, R. G. et al. Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur. J. Immunol. 17, 1429–1433 (1987).

    Article  CAS  PubMed  Google Scholar 

  98. Belkaid, Y. et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168, 3992–4000 (2002).A demonstration that CD8+ T cells are essential for primary immunity in resistant mice.

    Article  CAS  PubMed  Google Scholar 

  99. Da-Cruz, A. M., Conceicao-Silva, F., Bertho, A. L. & Coutinho, S. G. Leishmania-reactive CD4+ and CD8+ T cells associated with cure of human cutaneous leishmaniasis. Infect. Immun. 62, 2614–2618 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gaafar, A. et al. Characterization of the local and systemic immune responses in patients with cutaneous leishmaniasis due to Leishmania major. Clin. Immunol. 91, 314–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Bogdan, C. et al. Fibroblasts as host cells in latent leishmaniasis. J. Exp. Med. 191, 2121–2130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moll, H., Flohe, S. & Blank, C. Dendritic cells seclude Leishmania parasites that persist in cured mice — a role in the maintenance of T-cell memory? Adv. Exp. Med. Biol. 378, 507–509 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Aebischer, T., Moody, S. F. & Handman, E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect. Immun. 61, 220–226 (1993).One of the first demonstrations that L. major persists after healing in resistant mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stenger, S., Donhauser, N., Thuring, H., Rollinghoff, M. & Bogdan, C. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183, 1501–1514 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–1506 (2001).A demonstration that IL-10 is required for L. major persistence in healed mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Louzir, H. et al. Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major. J. Infect. Dis. 177, 1687–1695 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Bosque, F., Saravia, N. G., Valderrama, L. & Milon, G. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand. J. Immunol. 51, 533–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kemp, K. et al. Leishmania-specific T cells expressing interferon-γ (IFN-γ) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin. Exp. Immunol. 116, 500–504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. & Sacks, D. CD4+CD25+ immunoregulatory T lymphocytes control Leishmania major persistence and the development of concomitant immunity. Nature (in the press).

  110. Uzonna, J. E., Wei, G., Yurkowski, D. & Bretscher, P. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination and reactivation disease. J. Immunol. 167, 6967–6974 (2001).The first indication that sterile cure results in the loss of immunity to re-infection.

    Article  CAS  PubMed  Google Scholar 

  111. Modabber, F. Experiences with vaccines against cutaneous leishmaniasis: of men and mice. Parasitology 98, S49–S60 (1989).

    Article  PubMed  Google Scholar 

  112. Sharifi, I. et al. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351, 1540–1543 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Momeni, A. Z. et al. A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 17, 466–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Gurunathan, S., Prussin, C., Sacks, D. L. & Seder, R. A. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nature Med. 4, 1409–1415 (1998).A demonstration that long-lasting vaccine-induced protection requires persistent antigen and IL-12.

    Article  CAS  PubMed  Google Scholar 

  115. Mendez, S. et al. The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. J. Immunol. 166, 5122–5128 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Seder, R. A. & Hill, A. V. Vaccines against intracellular infections requiring cellular immunity. Nature 406, 793–798 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Gillespie, R. D., Mbow, M. L. & Titus, R. G. The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol. 22, 319–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Belkaid, Y. et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 188, 1941–1953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kamhawi, S., Belkaid, Y., Modi, G., Rowton, E. & Sacks, D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290, 1351–1354 (2000).A demonstration that the immune response to sandfly saliva can potentiate the host response to L. major infection transmitted by sandfly bite.

    Article  CAS  PubMed  Google Scholar 

  120. Valenzuela, J. G. et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med. 194, 331–342 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morris, R. V., Shoemaker, C. B., David, J. R., Lanzaro, G. C. & Titus, R. G. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol. 167, 5226–5230 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Sacks, D. L., Hieny, S. & Sher, A. Identification of cell-surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J. Immunol. 135, 564–569 (1985).

    CAS  PubMed  Google Scholar 

  123. Kellina, O. I. Differences in the sensitivity of inbred mice of different lines to Leishmania tropica major. Med. Parazitol. (Mosk.) 42, 279–285 (1973).

    CAS  Google Scholar 

  124. Nasseri, M. & Modabber, F. Z. Generalized infection and lack of delayed hypersensitivity in BALB/c mice infected with Leishmania tropica major. Infect. Immun. 26, 611–614 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Howard, J. G., Hale, C. & Liew, F. Y. Immunological regulation of experimental cutaneous leishmaniasis. III. Nature and significance of specific suppression of cell-mediated immunity in mice highly susceptible to Leishmania tropica. J. Exp. Med. 152, 594–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  126. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T-cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  127. Scott, P., Natovitz, P., Coffman, R. L., Pearce, E. & Sher, A. Immunoregulation of cutaneous leishmaniasis. T-cell lines that transfer protective immunity or exacerbation belong to different T-helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168, 1675–1684 (1988).

    Article  CAS  PubMed  Google Scholar 

  128. Heinzel, F. P., Sadick, M. D., Holaday, B. J., Coffman, R. L. & Locksley, R. M. Reciprocal expression of interferon-γ or interleukin-4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T-cell subsets. J. Exp. Med. 169, 59–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Mock, B., Blackwell, J., Hilgers, J., Potter, M. & Nacy, C. Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice. Eur. J. Immunogenet. 20, 335–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, D. M. et al. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J. Immunol. 145, 2281–2285 (1990).

    CAS  PubMed  Google Scholar 

  131. Connell, N. D., Medina-Acosta, E., McMaster, W. R., Bloom, B. R. & Russell, D. G. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc. Natl Acad. Sci. USA 90, 11473–11477 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Spitzer, N., Jardim, A., Lippert, D. & Olafson, R. W. Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17, 1298–1300 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Xu, D. & Liew, F. Y. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology 84, 173–176 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Handman, E., Symons, F. M., Baldwin, T. M., Curtis, J. M. & Scheerlinck, J. P. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infect. Immun. 63, 4261–4267 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sjolander, A., Baldwin, T. M., Curtis, J. M. & Handman, E. Induction of a TH1 immune response and simultaneous lack of activation of a TH2 response are required for generation of immunity to leishmaniasis. J. Immunol. 160, 3949–3957 (1998).

    CAS  PubMed  Google Scholar 

  136. Mougneau, E. et al. Expression cloning of a protective Leishmania antigen. Science 268, 563–566 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Webb, J. R. et al. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect. Immun. 66, 3279–3289 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Campos-Neto, A. et al. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect. Immun. 70, 2828–2836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rafati, S., Salmanian, A. H., Taheri, T., Vafa, M. & Fasel, N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine 19, 3369–3375 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Solioz, N. et al. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine 18, 850–859 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Sher and D. Jankovic for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sacks.

Related links

Related links

DATABASES

LocusLink

β2-microglobulin

B7

Bcl-6

CCR2

CD8

CD28

CD40

CD40L

c-MAF

CTLA4

Fas

FasL

FOG1

GATA3

IFN-γ

IFN-γR

IL-4

IL-4Rα

IL-10

IL-10R

IL-12

IL-12 p40

IL-12Rβ1

IL-12Rβ2

IL-13

IL-13Rα2

IL-18

iNOS

MCP1

NFAT-c

OX40

OX40L

ROG

STAT1

STAT4

STAT6

T-bet

TGF-β

TGF-β receptor type II

TNF

TNFR1

TNFR2

WSX1

Swiss-Prot

GFP

FURTHER INFORMATION

Mouse Genome Informatics

Glossary

T HELPER 1/T HELPER 2

(TH1/TH2). A classification of CD4+ T cells on the basis of the patterns of cytokines that they secrete. TH1 cells secrete large amounts of IFN-γ and associated pro-inflammatory cytokines. TH2 cells secrete large amounts of IL-4 and associated cytokines that promote antibody production by B cells. TH1/TH2 cytokines can cross-regulate each other's responses. An imbalance of TH1/TH2 responses is thought to contribute to the pathogenesis of various infections, allergic responses and autoimmune diseases.

IL-4 REPORTER MICE

Genetically engineered knock-in mice in which the gene encoding IL-4 has been replaced by sequences that encode a reporter molecule, such as green fluorescent protein (GFP). When the IL-4 promoter region is activated, GFP is expressed and living cells can be visualized by flow cytometry.

MHC CLASS II TETRAMERS

A method of visualizing antigen-specific CD4+ T cells by flow cytometry. Typically, four MHC class II molecules with their associated peptides are held together by streptavidin, which has four binding sites for biotin, which is attached to the tail of the MHC molecule. These four peptide–MHC complexes (tetramers) can bind peptide-specific T-cell receptors. The streptavidin molecules are often labelled with a fluorochrome so that binding can be assessed by flow cytometry. Similarly, MHC class I tetramers can be engineered to track CD8+ T-cell receptors.

SEVERE COMBINED IMMUNODEFICIENCY

(SCID). Mice of this phenotype lack functional T and B cells owing to a spontaneous mutation in the Prkdc gene (protein kinase, DNA activated, catalytic polypeptide) located on chromosome 16. These mice are often used for the reconstitution of T-cell subsets to study their functions in vivo.

REACTIVE NITROGEN INTERMEDIATES

(RNIs). Primarily nitric oxide, these are generated by nitrogen oxidation of l-arginine, and can have potent activity to destroy intracellular pathogens such as Leishmania.

CD4+CD25+CD45RBLOW REGULATORY T CELLS

A specialized subset of CD4+ T cells that can suppress other T-cell responses. These cells are characterized by expression of the IL-2 receptor β-chain (CD25). In some instances, suppression has been associated with the secretion of IL-10, TGF-β or both.

SAFE-TARGET MODEL

A model to explain the role of cell types such as fibroblasts, which L. major parasites might infect and replicate in without activating immune responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacks, D., Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2, 845–858 (2002). https://doi.org/10.1038/nri933

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing