Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimodal monitoring and neurocritical care bioinformatics

Abstract

Neurocritical care bioinformatics is a new field that focuses on the acquisition, storage and analysis of physiological and other data relevant to the bedside care of patients with acute neurological conditions such as traumatic brain injury or stroke. The main focus of neurocritical care for these conditions relates to prevention, detection and management of secondary brain injury, which relies heavily on monitoring of systemic and cerebral parameters (such as blood-pressure level and intracranial pressure). Advanced neuromonitoring tools also exist that enable measurement of brain tissue oxygen tension, cerebral oxygen utilization, and aerobic metabolism. The ability to analyze these advanced data for real-time clinical care, however, remains intuitive and primitive. Advanced statistical and mathematical tools are now being applied to the large volume of clinical physiological data routinely monitored in neurocritical care with the goal of identifying better markers of brain injury and providing clinicians with improved ability to target specific goals in the management of these patients. This Review provides an introduction to the concepts of multimodal monitoring for secondary brain injury in neurocritical care and outlines initial and future approaches using informatics tools for understanding and applying these data to clinical care.

Key Points

  • Monitoring for secondary brain injury is a fundamental aspect of neurocritical care

  • Advances in neuromonitoring technologies have been profound and now include the ability to directly monitor brain oxygenation, cerebral blood flow, and cerebral metabolism in, essentially, real time

  • Despite these advances, data from bedside monitors in neurocritical care are evaluated by clinicians in much the same way as 40 years ago

  • Informatics has fundamentally changed many fields in medicine including epidemiology, genetics and pharmacology

  • New data-acquisition, storage and analytical tools are now being applied to neurocritical care data to harness the large volume of data now available to clinicians

  • Neurocritical care bioinformatics is an emerging field that will require collaboration between clinicians, computer scientists, engineers, and informatics experts to bring user-friendly, real-time advances to the patient bedside

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The neurocritical care environment.
Figure 2: Kiosk-type critical care data acquisition system.
Figure 3: Decision tree analysis for prediction of outcome after traumatic brain injury.
Figure 4: Self-organizing heat map of physiological variables for neurocritical care.

Similar content being viewed by others

References

  1. Gawande, A. The checklist. The New Yorker (10 Dec 2007).

  2. Ropper, A. H. Neurological intensive care. Ann. Neurol. 32, 564–569 (1992).

    CAS  PubMed  Google Scholar 

  3. Andrews, P. J. Critical care management of acute ischemic stroke. Curr. Opin. Crit. Care 10, 110–115 (2004).

    PubMed  Google Scholar 

  4. Chesnut, R. M. et al. The role of secondary brain injury in determining outcome from severe head injury. J. Trauma 34, 216–222 (1993).

    CAS  PubMed  Google Scholar 

  5. Diedler, J. & Czosnyka, M. Merits and pitfalls of multimodality brain monitoring. Neurocrit. Care 12, 313–316 (2010).

    PubMed  Google Scholar 

  6. Stuart, R. M. et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit. Care 12, 188–198 (2010).

    PubMed  Google Scholar 

  7. Wartenberg, K. E., Schmidt, J. M. & Mayer, S. A. Multimodality monitoring in neurocritical care. Crit. Care Clin. 23, 507–538 (2007).

    CAS  PubMed  Google Scholar 

  8. Chambers, I. R. et al. BrainIT: a trans-national head injury monitoring research network. Acta Neurochir. Suppl. 96, 7–10 (2006).

    CAS  PubMed  Google Scholar 

  9. Sorani, M. D., Hemphill, J. C. 3rd, Morabito, D., Rosenthal, G. & Manley, G. T. New approaches to physiological informatics in neurocritical care. Neurocrit. Care 7, 45–52 (2007).

    PubMed  Google Scholar 

  10. Fahy, B. G. & Sivaraman, V. Current concepts in neurocritical care. Anesthesiol. Clin. North America 20, 441–462 (2002).

    PubMed  Google Scholar 

  11. Badjatia, N. Hyperthermia and fever control in brain injury. Crit. Care Med. 37, S250–S257 (2009).

    PubMed  Google Scholar 

  12. Van den Berghe, G., Schoonheydt, K., Becx, P., Bruyninckx, F. & Wouters, P. J. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64, 1348–1353 (2005).

    CAS  PubMed  Google Scholar 

  13. Forsyth, R. J., Wolny, S. & Rodrigues, B. Routine intracranial pressure monitoring in acute coma. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD002043. doi:10.1002/14651858.CD002043.pub2 (2010).

  14. Bratton, S. L. et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J. Neurotrauma 24 (Suppl. 1), S55–S58 (2007).

    PubMed  Google Scholar 

  15. Bratton, S. L. et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J. Neurotrauma 24 (Suppl. 1), S45–S54 (2007).

    PubMed  Google Scholar 

  16. Morgenstern, L. B. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 41, 2108–2129 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Andrews, P. J. & Citerio, G. Intracranial pressure. Part one: historical overview and basic concepts. Intensive Care Med. 30, 1730–1733 (2004).

    PubMed  Google Scholar 

  18. Citerio, G. & Andrews, P. J. Intracranial pressure. Part two: clinical applications and technology. Intensive Care Med. 30, 1882–1885 (2004).

    PubMed  Google Scholar 

  19. Martinez-Manas, R. M., Santamarta, D., de Campos, J. M. & Ferrer, E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J. Neurol. Neurosurg. Psychiatry 69, 82–86 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Munch, E., Weigel, R., Schmiedek, P. & Schurer, L. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir (Wien) 140, 1113–1119 (1998).

    CAS  Google Scholar 

  21. Bratton, S. L. et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J. Neurotrauma 24 (Suppl. 1), S59–S64 (2007).

    PubMed  Google Scholar 

  22. Rosner, M. J., Rosner, S. D. & Johnson, A. H. Cerebral perfusion pressure: management protocol and clinical results. J. Neurosurg. 83, 949–962 (1995).

    CAS  PubMed  Google Scholar 

  23. Robertson, C. S. et al. Prevention of secondary ischemic insults after severe head injury. Crit. Care Med. 27, 2086–2095 (1999).

    CAS  PubMed  Google Scholar 

  24. Andrews, P. J. Cerebral perfusion pressure and brain ischaemia: can one size fit all? Crit. Care 9, 638–639 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. Howells, T. et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J. Neurosurg. 102, 311–317 (2005).

    PubMed  Google Scholar 

  26. Rose, J. C., Neill, T. A. & Hemphill, J. C. 3rd . Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr. Opin. Crit. Care 12, 97–102 (2006).

    PubMed  Google Scholar 

  27. Hemphill, J. C. 3rd, Morabito, D., Farrant, M. & Manley, G. T. Brain tissue oxygen monitoring in intracerebral hemorrhage. Neurocrit. Care 3, 260–270 (2005).

    PubMed  Google Scholar 

  28. Rumana, C. S., Gopinath, S. P., Uzura, M., Valadka, A. B. & Robertson, C. S. Brain temperature exceeds systemic temperature in head-injured patients. Crit. Care Med. 26, 562–567 (1998).

    CAS  PubMed  Google Scholar 

  29. van den Brink, W. A. et al. Brain oxygen tension in severe head injury. Neurosurgery 46, 868–876 (2000).

    CAS  PubMed  Google Scholar 

  30. Nakagawa, K. et al. The effect of decompressive hemicraniectomy on brain temperature after severe brain injury. Neurocrit. Care doi:10.1007/s12028-010-9446-y.

    Google Scholar 

  31. Carter, L. P., Weinand, M. E. & Oommen, K. J. Cerebral blood flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir. Suppl. (Wien) 59, 43–46 (1993).

    CAS  Google Scholar 

  32. Sioutos, P. J. et al. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery 36, 943–949 (1995).

    CAS  PubMed  Google Scholar 

  33. Vajkoczy, P., Horn, P., Thome, C., Munch, E. & Schmiedek, P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 98, 1227–1234 (2003).

    PubMed  Google Scholar 

  34. Thome, C. et al. Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery. J. Neurosurg. 95, 402–411 (2001).

    CAS  PubMed  Google Scholar 

  35. Vajkoczy, P. et al. Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke 32, 498–505 (2001).

    CAS  PubMed  Google Scholar 

  36. Robertson, C. S. et al. SjvO2 monitoring in head-injured patients. J. Neurotrauma 12, 891–896 (1995).

    CAS  PubMed  Google Scholar 

  37. Macmillan, C. S., Andrews, P. J. & Easton, V. J. Increased jugular bulb saturation is associated with poor outcome in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 70, 101–104 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodman, J. C. & Robertson, C. S. Microdialysis: is it ready for prime time? Curr. Opin. Crit. Care 15, 110–117 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Marcoux, J. et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit. Care Med. 36, 2871–2877 (2008).

    CAS  PubMed  Google Scholar 

  40. Bellander, B. M. et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 30, 2166–2169 (2004).

    PubMed  Google Scholar 

  41. Siggaard-Andersen, O., Ulrich, A. & Gothgen, I. H. Classes of tissue hypoxia. Acta Anaesthesiol. Scand. Suppl. 107, 137–142 (1995).

    CAS  PubMed  Google Scholar 

  42. Hutchinson, P. J. et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β, and their endogenous inhibitor IL-1ra. J. Neurotrauma 24, 1545–1557 (2007).

    PubMed  Google Scholar 

  43. Andrews, P. J. et al. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 34, 1362–1370 (2008).

    PubMed  Google Scholar 

  44. Stuart, R. M. et al. Intracortical EEG for the detection of vasospasm in patients with poor-grade subarachnoid hemorrhage. Neurocrit. Care 13, 355–358 (2010).

    PubMed  Google Scholar 

  45. Claassen, J. et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit. Care 4, 103–112 (2006).

    PubMed  Google Scholar 

  46. Claassen, J. et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin. Neurophysiol. 115, 2699–2710 (2004).

    PubMed  Google Scholar 

  47. Fountas, K. N. et al. Clinical implications of quantitative infrared pupillometry in neurosurgical patients. Neurocrit. Care 5, 55–60 (2006).

    PubMed  Google Scholar 

  48. Kim, M. N. et al. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit. Care 12, 173–180 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. De Georgia, M. A. & Deogaonkar, A. Multimodal monitoring in the neurological intensive care unit. Neurologist 11, 45–54 (2005).

    PubMed  Google Scholar 

  50. Buchman, T. G. Computers in the intensive care unit: promises yet to be fulfilled. J. Intensive Care Med. 10, 234–240 (1995).

    CAS  PubMed  Google Scholar 

  51. Kumar, S. & Aldrich, K. Overcoming barriers to electronic medical record (EMR) implementation in the US healthcare system: A comparative study. Health Informatics J. 16, 306–318 (2010).

    PubMed  Google Scholar 

  52. Ali, T. Electronic medical record and quality of patient care in the VA. Med. Health R. I. 93, 8–10 (2010).

    PubMed  Google Scholar 

  53. Burykin, A. et al. Toward optimal display of physiologic status in critical care: I. Recreating bedside displays from archived physiologic data. J. Crit. Care 26, 105.e1–105.e9 (2010).

    Google Scholar 

  54. Goldstein, B. et al. Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit. Care Med. 31, 433–441 (2003).

    PubMed  Google Scholar 

  55. ASTM subcommittee F29.21. ASTM Standard F2761–09 Medical devices and medical systems—essential safety requirements for equipment comprising the patient-centric integrated clinical environment (ICE)—Part 1: general requirements and conceptual model. ASTM International[online], (2009).

  56. Otero, A., Felix, P., Barro, S. & Palacios, F. Addressing the flaws of current critical alarms: a fuzzy constraint satisfaction approach. Artif. Intell. Med. 47, 219–238 (2009).

    PubMed  Google Scholar 

  57. Smielewski, P. et al. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir. Suppl. 95, 43–49 (2005).

    CAS  PubMed  Google Scholar 

  58. Gomez, H. et al. Development of a multimodal monitoring platform for medical research. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 2358–2361 (2010).

    Google Scholar 

  59. Saeed, M. et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39, 952–960 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Chambers, I. et al. BrainIT collaborative network: analyses from a high time-resolution dataset of head injured patients. Acta Neurochir. Suppl. 102, 223–237 (2008).

    PubMed  Google Scholar 

  61. Piper, I. et al. The brain monitoring with Information Technology (BrainIT) collaborative network: EC feasibility study results and future direction. Acta Neurochir (Wien) 152, 1859–1871 (2010).

    Google Scholar 

  62. Diringer, M. N. Treatment of fever in the neurologic intensive care unit with a catheter-based heat exchange system. Crit. Care Med. 32, 559–564 (2004).

    PubMed  Google Scholar 

  63. Diedler, J. et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke 40, 815–819 (2009).

    PubMed  Google Scholar 

  64. Steiner, L. A. et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit. Care Med. 30, 733–738 (2002).

    PubMed  Google Scholar 

  65. Buchman, T. G. The digital patient: predicting physiologic dynamics with mathematical models. Crit. Care Med. 37, 1167–1168 (2009).

    PubMed  Google Scholar 

  66. McQuatt, A., Sleeman, D., Andrews, P. J., Corruble, V. & Jones, P. A. Discussing anomalous situations using decision trees: a head injury case study. Methods Inf. Med. 40, 373–379 (2001).

    CAS  PubMed  Google Scholar 

  67. Andrews, P. J. et al. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J. Neurosurg. 97, 326–336 (2002).

    PubMed  Google Scholar 

  68. Vath, A., Meixensberger, J., Dings, J., Meinhardt, M. & Roosen, K. Prognostic significance of advanced neuromonitoring after traumatic brain injury using neural networks. Zentralbl. Neurochir. 61, 2–6 (2000).

    CAS  PubMed  Google Scholar 

  69. Nelson, D. W. et al. Cerebral microdialysis of patients with severe traumatic brain injury exhibits highly individualistic patterns as visualized by cluster analysis with self-organizing maps. Crit. Care Med. 32, 2428–2436 (2004).

    CAS  PubMed  Google Scholar 

  70. Cohen, M. J. et al. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis. Crit. Care 14, R10 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Goldberger, A. L. in Applied Chaos (eds Kim, J. H. & Stringer, J.) 321–331 (Wiley-Interscience, New York, 1992).

    Google Scholar 

  72. Kleiger, R. E., Miller, J. P., Bigger, J. T. Jr & Moss, A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59, 256–262 (1987).

    CAS  PubMed  Google Scholar 

  73. Szabo, B. M. et al. Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol. 79, 978–980 (1997).

    CAS  PubMed  Google Scholar 

  74. Kirkness, C. J., Burr, R. L. & Mitchell, P. H. Intracranial pressure variability and long-term outcome following traumatic brain injury. Acta Neurochir. Suppl. 102, 105–108 (2008).

    PubMed  Google Scholar 

  75. Triedman, J. K., Cohen, R. J. & Saul, J. P. Mild hypovolemic stress alters autonomic modulation of heart rate. Hypertension 21, 236–247 (1993).

    CAS  PubMed  Google Scholar 

  76. Mussalo, H. et al. Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin. Physiol. 21, 594–604 (2001).

    CAS  PubMed  Google Scholar 

  77. van Boven, A. J. et al. Depressed heart rate variability is associated with events in patients with stable coronary artery disease and preserved left ventricular function. REGRESS Study Group. Am. Heart J. 135, 571–576 (1998).

    CAS  PubMed  Google Scholar 

  78. Axelrod, S., Lishner, M., Oz, O., Bernheim, J. & Ravid, M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45, 202–206 (1987).

    CAS  PubMed  Google Scholar 

  79. Toweill, D. L. et al. Linear and nonlinear analysis of heart rate variability during propofol anesthesia for short-duration procedures in children. Pediatr. Crit. Care Med. 4, 308–314 (2003).

    PubMed  Google Scholar 

  80. Ryan, S. M., Goldberger, A. L., Pincus, S. M., Mietus, J. & Lipsitz, L. A. Gender- and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Cardiol. 24, 1700–1707 (1994).

    CAS  PubMed  Google Scholar 

  81. Vikman, S. et al. Altered complexity and correlation properties of R–R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100, 2079–2084 (1999).

    CAS  PubMed  Google Scholar 

  82. Hornero, R., Aboy, M., Abasolo, D., McNames, J. & Goldstein, B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans. Biomed. Eng. 52, 1671–1680 (2005).

    PubMed  Google Scholar 

  83. Papaioannou, V. E., Maglaveras, N., Houvarda, I., Antoniadou, E. & Vretzakis, G. Investigation of altered heart rate variability, nonlinear properties of heart rate signals, and organ dysfunction longitudinally over time in intensive care unit patients. J. Crit. Care 21, 95–103 (2006).

    PubMed  Google Scholar 

  84. Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000).

    CAS  PubMed  Google Scholar 

  85. Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797 (2002).

    CAS  PubMed  Google Scholar 

  86. Burr, R. L., Kirkness, C. J. & Mitchell, P. H. Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury. IEEE Trans. Biomed. Eng. 55, 2509–2518 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Buchman, T. G. Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr. Opin. Crit. Care 10, 378–382 (2004).

    PubMed  Google Scholar 

  88. Buchman, T. G. Novel representation of physiologic states during critical illness and recovery. Crit. Care 14, 127 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Buchman, T. G. Physiologic stability and physiologic state. J. Trauma 41, 599–605 (1996).

    CAS  PubMed  Google Scholar 

  90. Ursino, M., Lodi, C. A., Rossi, S. & Stocchetti, N. Estimation of the main factors affecting ICP dynamics by mathematical analysis of PVI tests. Acta Neurochir. Suppl. 71, 306–309 (1998).

    CAS  PubMed  Google Scholar 

  91. Godin, P. J. & Buchman, T. G. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit. Care Med. 24, 1107–1116 (1996).

    CAS  PubMed  Google Scholar 

  92. Coveney, P. V. & Fowler, P. W. Modelling biological complexity: a physical scientist's perspective. J. R. Soc. Interface 2, 267–280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jacono, F. F., DeGeorgia, M. A., Wilson, C. G., Dick, T. E. & Loparo, K. A. Data acquisition and complex systems analysis in critical care: developing the intensive care unit of the future. J. Healthcare Eng. 1, 337–356 (2010).

    Google Scholar 

  94. Peelen, L. et al. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit. J. Biomed. Inform. 43, 273–286 (2010).

    PubMed  Google Scholar 

  95. Tatsuoka, C. Data analytic methods for latent partially ordered classification models. Appl. Statist. 51, 337–350 (2002).

    Google Scholar 

  96. Zenker, S., Rubin, J. & Clermont, G. From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS Comput. Biol. 3, e204 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. AVERT-IT project. Avert-IT[online], (2011).

Download references

Acknowledgements

J. C. Hemphill is funded in part by grant U10 NS058931 from the US NIH. P. Andrews has received funding from the European Society of Intensive Care Medicine for the Eurotherm3235 Trial.

L. Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching, discussing, writing, reviewing and editing this manuscript.

Corresponding author

Correspondence to J. Claude Hemphill.

Ethics declarations

Competing interests

J. C. Hemphill has acted as a consultant for, and holds shares of stock for, Ornim. M. De Georgia has acted as a consultant for Orsan Medical Technologies. P. Andrews declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemphill, J., Andrews, P. & De Georgia, M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol 7, 451–460 (2011). https://doi.org/10.1038/nrneurol.2011.101

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing