Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Schwann cell interactions with axons and microvessels in diabetic neuropathy

Key Points

  • Peripheral neuropathy is a serious but often neglected complication of diabetes mellitus

  • Schwann cells support the structural and functional integrity of nerves, so their damage as a result of the metabolic consequences of diabetes adversely affects axons

  • High polyol pathway flux, oxidative stress and inflammation are the main pathways activated in Schwann cells during diabetic neuropathy

  • Disruption of Schwann cell metabolism by hyperglycaemia and/or dyslipidaemia results in accumulation of neurotoxic intermediates that confer axonal and vascular vulnerability to injury

  • Microvascular changes within the endoneurium create a hypoxic environment that has the potential to disrupt Schwann cell function, promoting activation of inflammatory cascades that lead to neurodegeneration

Abstract

The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of diabetic neuropathy.
Figure 2: Hyperglycaemia-driven Schwann cell stress and neurodegeneration.

Similar content being viewed by others

References

  1. Callaghan, B. C., Hur, J. & Feldman, E. L. Diabetic neuropathy: one disease or two? Curr. Opin. Neurol. 25, 536–541 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yagihashi, S. & Matsunaga, M. Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J. Exp. Med. 129, 357–366 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Mizisin, A. P. Mechanisms of diabetic neuropathy: Schwann cells. Handb. Clin. Neurol. 126, 401–428 (2014). A detailed review describing ultrastructural Schwann cell changes in diabetic patients and animal models.

    Article  PubMed  Google Scholar 

  4. Ydens, E. et al. The neuroinflammatory role of Schwann cells in disease. Neurobiol. Dis. 55, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Jessen, K. R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005). A comprehensive description of Schwann cell biology during development of peripheral nerves.

    Article  CAS  PubMed  Google Scholar 

  6. Yamauchi, J., Chan, J. R. & Shooter, E. M. Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc. Natl Acad. Sci. USA 100, 14421–14426 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cosgaya, J. M., Chan, J. R. & Shooter, E. M. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298, 1245–1248 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Reichardt, L. F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1545–1564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikoletopoulou, V. et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467, 59–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Masoudi, R. et al. Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J. Biol. Chem. 284, 18424–18433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nykjaer, A. et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature 427, 843–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Deinhardt, K. et al. Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci. Signal. 4, ra82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richner, M. et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol. Neurobiol. 50, 945–970 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Leinninger, G. M., Vincent, A. M. & Feldman, E. L. The role of growth factors in diabetic peripheral neuropathy. J. Peripher. Nerv. Syst. 9, 26–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Cattin, A.-L. et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 162, 1127–1139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calcutt, N. A., Muir, D., Powell, H. C. & Mizisin, A. P. Reduced ciliary neuronotrophic factor-like activity in nerves from diabetic or galactose-fed rats. Brain Res. 575, 320–324 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Calcutt, N. A. et al. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J. Clin. Invest. 111, 507–514 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dey, I. et al. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61, 1990–1999 (2013).

    Article  PubMed  Google Scholar 

  22. Court, F. A., Wrabetz, L. & Feltri, M. L. Basal lamina: Schwann cells wrap to the rhythm of space-time. Curr. Opin. Neurobiol. 16, 501–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Engelstad, J. K., Davies, J. L., Giannini, C., O'Brien, P. C. & Dyck, P. J. No evidence for axonal atrophy in human diabetic polyneuropathy. J. Neuropathol. Exp. Neurol. 56, 255–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Obrosova, I. G. et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of 'healthy' diet and aldose reductase inhibition. Diabetes 56, 2598–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Behse, F., Buchthal, F. & Carlsen, F. Nerve biopsy and conduction studies in diabetic neuropathy. J. Neurol. Neurosurg. Psychiatry 40, 1072–1082 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dyck, P. J. et al. Human diabetic endoneurial sorbitol, fructose, and myo-inositol related to sural nerve morphometry. Ann. Neurol. 8, 590–596 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Mizisin, A. P., Shelton, G. D., Wagner, S., Rusbridge, C. & Powell, H. C. Myelin splitting, Schwann cell injury and demyelination in feline diabetic neuropathy. Acta Neuropathol. 95, 171–174 (1998). Paper describing reactive and degenerative Schwann cell changes and ballooning of the myelin sheath in a feline model of diabetes.

    Article  CAS  PubMed  Google Scholar 

  28. Malik, R. A. et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 48, 578–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kalichman, M. W., Powell, H. C. & Mizisin, A. P. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol. 95, 47–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Chowdhury, S. K., Smith, D. R. & Fernyhough, P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol. Dis. 51, 56–65 (2013). A summary of the major features of mitochondrial dysfunction in neurons and Schwann cells in patients with diabetes and in experimental animal models.

    Article  CAS  PubMed  Google Scholar 

  31. Lennertz, R. C., Medler, K. A., Bain, J. L., Wright, D. E. & Stucky, C. L. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. J. Neurophysiol. 106, 905–914 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Becker, M., Benromano, T., Shahar, A., Nevo, Z. & Pick, C. G. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats. J. Mol. Neurosci. 54, 704–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gabbay, K. H., Merola, L. O. & Field, R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 151, 209–210 (1966). An original key paper describing elevated levels of glucose and sorbitol in diabetic nervous tissue.

    Article  CAS  PubMed  Google Scholar 

  34. Tomlinson, D. R., Holmes, P. R. & Mayer, J. H. Reversal, by treatment with an aldose reductase inhibitor, of impaired axonal transport and motor nerve conduction velocity in experimental diabetes mellitus. Neurosci. Lett. 31, 189–193 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Ho, E. C. et al. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 55, 1946–1953 (2006). An important study that used aldose reductase-deficient mice to demonstrate that increased polyol pathway flux through aldose reductase in Schwann cells is a major contributing factor to the early signs of diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  36. Ng, T. F. et al. Effects of sorbitol dehydrogenase deficiency on nerve conduction in experimental diabetic mice. Diabetes 47, 961–966 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Song, Z. et al. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol. Cell. Neurosci. 23, 638–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Uehara, K., Yamagishi, S.-I., Otsuki, S., Chin, S. & Yagihashi, S. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes 53, 3239–3247 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Y., Calcutt, N. A., Ramos, K. M., Rames, K. M. & Mizisin, A. P. Novel sites of aldose reductase immunolocalization in normal and streptozotocin-diabetic rats. J. Peripher. Nerv. Syst. 11, 274–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Ludvigson, M. A. & Sorenson, R. L. Immunohistochemical localization of aldose reductase. I. Enzyme purification and antibody preparation — localization in peripheral nerve, artery, and testis. Diabetes 29, 438–449 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Powell, H. C., Garrett, R. S., Kador, P. F. & Mizisin, A. P. Fine-structural localization of aldose reductase and ouabain-sensitive, K+-dependent p-nitro-phenylphosphatase in rat peripheral nerve. Acta Neuropathol. 81, 529–539 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Vedantham, S. et al. Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes 63, 761–774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, K. R. Demyelinating neuropathy in diabetes mellitus. Arch. Neurol. 59, 758–765 (2002).

    Article  PubMed  Google Scholar 

  44. Kato, N., Mizuno, K., Makino, M., Suzuki, T. & Yagihashi, S. Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats. Diabetes Res. Clin. Pract. 50, 77–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Powell, H. et al. Alloxan diabetic neuropathy: electron microscopic studies. Neurology 27, 60–66 (1977).

    Article  CAS  PubMed  Google Scholar 

  46. Gregory, J. A., Jolivalt, C. G., Goor, J., Mizisin, A. P. & Calcutt, N. A. Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol. 124, 561–573 (2012).

    Article  PubMed  Google Scholar 

  47. Kawashima, R. et al. Alterations in mRNA expression of myelin proteins in the sciatic nerves and brains of streptozotocin-induced diabetic rats. Neurochem. Res. 32, 1002–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Chapouly, C. et al. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes. Cardiovasc. Res. 109, 217–227 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Mizisin, A. P., Vu, Y., Shuff, M. & Calcutt, N. A. Ciliary neurotrophic factor improves nerve conduction and ameliorates regeneration deficits in diabetic rats. Diabetes 53, 1807–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Mizisin, A. P., Calcutt, N. A., DiStefano, P. S., Acheson, A. & Longo, F. M. Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Diabetes 46, 647–652 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Hao, W. et al. Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation. J. Biol. Chem. 290, 17106–17115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yagihashi, S. et al. Galactosemic neuropathy in transgenic mice for human aldose reductase. Diabetes 45, 56–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Mizisin, A. P. & Powell, H. C. Schwann cell injury is attenuated by aldose reductase inhibition in galactose intoxication. J. Neuropathol. Exp. Neurol. 52, 78–86 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Myers, R. R. & Powell, H. C. Galactose neuropathy: impact of chronic endoneurial edema on nerve blood flow. Ann. Neurol. 16, 587–594 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Mizisin, A. P., Powell, H. C. & Myers, R. R. Edema and increased endoneurial sodium in galactose neuropathy. Reversal with an aldose reductase inhibitor. J. Neurol. Sci. 74, 35–43 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Stavniichuk, R., Shevalye, H., Hirooka, H., Nadler, J. L. & Obrosova, I. G. Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy. Biochem. Pharmacol. 83, 932–940 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tentolouris, N. et al. Standard and emerging treatment options for diabetic neuropathy. Curr. Pharm. Des. 20, 3689–3704 (2014). A recent review of current treatment options for diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  58. Fernyhough, P. & Calcutt, N. A. New directions in diabetic neuropathy: evolution or extinction? Int. Rev. Neurobiol. 127, 229–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Greene, D. A., Arezzo, J. C. & Brown, M. B. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 53, 580–591 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Polydefkis, M. et al. Safety and efficacy of ranirestat in patients with mild-to-moderate diabetic sensorimotor polyneuropathy. J. Peripher. Nerv. Syst. 20, 363–371 (2015).

    Article  PubMed  Google Scholar 

  61. Vincent, A. M., Russell, J. W., Low, P. & Feldman, E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612–628 (2004). An examination of animal and cell culture models of diabetes, as well as clinical trials of antioxidants, describing how hyperglycaemia induces oxidative stress in diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  62. Babizhayev, M. A. et al. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem. Biophys. 71, 1425–1443 (2014).

    Article  CAS  Google Scholar 

  63. Fidanboylu, M., Griffiths, L. A. & Flatters, S. J. Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS ONE 6, e25212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kallenborn-Gerhardt, W. et al. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J. Neurosci. 32, 10136–10145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Uttara, B., Singh, A. V., Zamboni, P. & Mahajan, R. T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cunha, J. M. et al. Elevated lipid peroxidation and DNA oxidation in nerve from diabetic rats: effects of aldose reductase inhibition, insulin, and neurotrophic factors. Metab. Clin. Exp. 57, 873–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Obrosova, I. G. et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 54, 234–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Vincent, A. M. et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148, 548–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Haslbeck, K. M. et al. Activation of the RAGE pathway: a general mechanism in the pathogenesis of polyneuropathies? Neurol. Res. 29, 103–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt, A. M. & Stern, D. M. RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol. Metab. 11, 368–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yagihashi, S., Kamijo, M., Baba, M., Yagihashi, N. & Nagai, K. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 41, 47–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Obrosova, I. G. et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 54, 3435–3441 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Askwith, T., Zeng, W., Eggo, M. C. & Stevens, M. J. Taurine reduces nitrosative stress and nitric oxide synthase expression in high glucose-exposed human Schwann cells. Exp. Neurol. 233, 154–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Drel, V. R. et al. New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and tumor necrosis factor-α. Endocrinology 151, 2547–2555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gadau, S. D. Nitrosative stress induces proliferation and viability changes in high glucose-exposed rat Schwannoma cells. Neuro Endocrinol. Lett. 33, 279–284 (2012).

    CAS  PubMed  Google Scholar 

  76. Giacco, F. et al. GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop. Diabetes 64, 3273–3284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roy Chowdhury, S. K. et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135, 1751–1766 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sharma, V. & Sharma, P. L. Role of different molecular pathways in the development of diabetes-induced nephropathy. J. Diabetes Metab. http://dx.doi.org/10.4172/2155-6156.S9-004 (2013).

  79. Chowdhury, S. K. et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59, 1082–1091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Han, J. et al. Fuzi attenuates diabetic neuropathy in rats and protects schwann cells from apoptosis induced by high glucose. PLoS ONE 9, e86539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Viader, A. et al. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J. Neurosci. 31, 10128–10140 (2011). This paper examines how Schwann cell mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hinder, L. M. et al. Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction. Antioxid. Redox Signal. 21, 588–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Viader, A. et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77, 886–898 (2013). An important study showing how Schwann cells with mitochondrial dysfunction release acylcarnitines and induce axonal degeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, L. et al. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J. Proteome Res. 9, 458–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Freeman, O. J. et al. Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy. Diabetes 65, 228–238 (2016).

    CAS  PubMed  Google Scholar 

  86. Hiukka, A., Maranghi, M., Matikainen, N. & Taskinen, M.-R. PPARalpha: an emerging therapeutic target in diabetic microvascular damage. Nat. Rev. Endocrinol. 6, 454–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Vincent, A. M. et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58, 2376–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Almaguel, F. G. et al. Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res. 1318, 133–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Padilla, A., Descorbeth, M., Almeyda, A. L., Payne, K. & De Leon, M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res. 1370, 64–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Beirowski, B. et al. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat. Neurosci. 17, 1351–1361 (2014). This paper demonstrates how impairment of Schwann cell metabolism results in degeneration of primarily unmyelinated small sensory fibres while motor axons were comparatively spared.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuruvilla, R. & Eichberg, J. Depletion of phospholipid arachidonoyl-containing molecular species in a human Schwann cell line grown in elevated glucose and their restoration by an aldose reductase inhibitor. J. Neurochem. 71, 775–783 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Goethals, S., Ydens, E., Timmerman, V. & Janssens, S. Toll-like receptor expression in the peripheral nerve. Glia 58, 1701–1709 (2010).

    Article  PubMed  Google Scholar 

  93. Sbai, O. et al. RAGE–TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J. Cell Sci. 123, 4332–4339 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Vincent, A. M., Callaghan, B. C., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7, 573–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Herder, C. et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 32, 680–682 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Scheib, J. & Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Nukada, H., McMorran, P. D., Baba, M., Ogasawara, S. & Yagihashi, S. Increased susceptibility to ischemia and macrophage activation in STZ-diabetic rat nerve. Brain Res. 1373, 172–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Conti, G. et al. Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1beta and p75NTR. J. Neurol. Sci. 195, 35–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, J., Pan, P., Anyika, M., Blagg, B. S. & Dobrowsky, R. T. Modulating molecular chaperones improves mitochondrial bioenergetics and decreases the inflammatory transcriptome in diabetic sensory neurons. ACS Chem. Neurosci. 6, 1637–1648 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. O'Brien, P. D. et al. BTBR ob/ob mice as a novel diabetic neuropathy model: neurological characterization and gene expression analyses. Neurobiol. Dis. 73, 348–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. O'Brien, P. D. et al. Gender-specific differences in diabetic neuropathy in BTBR ob/ob mice. J. Diabetes Complicat. 30, 30–37 (2016).

    Article  Google Scholar 

  102. Krisp, C. et al. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics 13, 2670–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Narumi, K. et al. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J. Immunol. 194, 5539–5548 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Hermani, A., De Servi, B., Medunjanin, S., Tessier, P. A. & Mayer, D. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp. Cell Res. 312, 184–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Ghavami, S. et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20, 314–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Stavniichuk, R. et al. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. J. Diabetes Mellitus 3, 101–110 (2013).

    Article  CAS  Google Scholar 

  107. Yang, D. P. et al. p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination. J. Neurosci. 32, 7158–7168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang, W. et al. CD8+ T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy. Cell. Physiol. Biochem. 32, 827–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Shi, X., Chen, Y., Nadeem, L. & Xu, G. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J. Neuroinflammation 10, 69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. King, R. H. The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol. Pathol. 54, 400–408 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gabay, E., Wolf, G., Shavit, Y., Yirmiya, R. & Tal, M. Chronic blockade of interleukin-1 (IL-1) prevents and attenuates neuropathic pain behavior and spontaneous ectopic neuronal activity following nerve injury. Eur. J. Pain 15, 242–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, C. F. & Moalem-Taylor, G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J. Pain 12, 370–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Li, Y. et al. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int. J. Med. Sci. 10, 377–381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma, J. et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS ONE 9, e97985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, J.-J. et al. High-fat diet induces toll-like receptor 4-dependent macrophage/microglial cell activation and retinal impairment. Invest. Ophthalmol. Vis. Sci. 56, 3041–3050 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Jiang, Y. et al. TLR4 signaling induces functional nerve growth factor receptor p75NTR on mouse dendritic cells via p38MAPK and NF-kappa B pathways. Mol. Immunol. 45, 1557–1566 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Scarpini, E. et al. Induction of p75NGFR in human diabetic neuropathy. J. Neurol. Sci. 135, 55–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Yagihashi, S., Mizukami, H. & Sugimoto, K. Mechanism of diabetic neuropathy: where are we now and where to go? J. Diabetes Investig. 2, 18–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Cameron, N. E., Eaton, S. E., Cotter, M. A. & Tesfaye, S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44, 1973–1988 (2001). An important review of studies in humans and animal models underlining the importance of vascular dysfunction, driven by metabolic change, as a cause of diabetic neuropathy.

    Article  CAS  PubMed  Google Scholar 

  120. Giannini, C. & Dyck, P. J. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann. Neurol. 37, 498–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Thrainsdottir, S. et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 52, 2615–2622 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Østergaard, L. et al. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. Diabetologia 58, 666–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Schwartz, R. S., Eltzschig, H. K. & Carmeliet, P. Hypoxia and Inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  Google Scholar 

  124. Toth, C. et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57, 1002–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Yuan, G. et al. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J. Cell. Physiol. 226, 2925–2933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pop-Busui, R., Sima, A. & Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab. Res. Rev. 22, 257–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Dawson, V. L. & Dawson, T. M. Nitric oxide neurotoxicity. J. Chem. Neuroanat. 10, 179–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Hafer-Macko, C. E., Ivey, F. M., Sorkin, J. D. & Macko, R. F. Microvascular tissue plasminogen activator is reduced in diabetic neuropathy. Neurology 69, 268–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Teng, H. K. et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Andreassen, C. S., Jakobsen, J., Flyvbjerg, A. & Andersen, H. Expression of neurotrophic factors in diabetic muscle — relation to neuropathy and muscle strength. Brain 132, 2724–2733 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Angleys, H., Jespersen, S. N. & Østergaard, L. The effects of capillary transit time heterogeneity (CTH) on the cerebral uptake of glucose and glucose analogs: application to FDG and comparison to oxygen uptake. Front. Comput. Neurosci. 10, 97 (2016).

    Article  Google Scholar 

  132. Waxman, S. G. & Zamponi, G. W. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat. Neurosci. 17, 153–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Krishnan, A. V., Lin, C. S., Park, S. B. & Kiernan, M. C. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog. Neurobiol. 89, 288–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Zenker, J., Ziegler, D. & Chrast, R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 36, 439–449 (2013). This review takes a novel approach by focusing on nodal regions, areas of intense interactions between Schwann cells and axons, and how they may be particularly sensitive to diabetes-induced nerve degeneration.

    Article  CAS  PubMed  Google Scholar 

  135. Fernyhough, P. & Calcutt, N. A. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47, 130–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Cherian, P. V., Kamijo, M., Angelides, K. J. & Sima, A. A. Nodal Na+-channel displacement is associated with nerve-conduction slowing in the chronically diabetic BB/W rat: prevention by aldose reductase inhibition. J. Diabetes Complicat. 10, 192–200 (1996).

    Article  CAS  Google Scholar 

  137. Leffler, A. et al. GDNF and NGF reverse changes in repriming of TTX-sensitive Na+ currents following axotomy of dorsal root ganglion neurons. J. Neurophysiol. 88, 650–658 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Bierhaus, A. et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 18, 926–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Kwai, N. C. et al. In vivo evidence of reduced nodal and paranodal conductances in type 1 diabetes. Clin. Neurophysiol. 127, 1700–1706 (2016).

    Article  PubMed  Google Scholar 

  140. Kim, E. S., Isoda, F., Kurland, I. & Mobbs, C. V. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists. Endocrinology 154, 3054–3066 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tan, W. et al. Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 expression in Schwann cells via p75 neurotrophin receptor signaling. J. Biol. Chem. 278, 23151–23162 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Yu, C., Rouen, S. & Dobrowsky, R. T. Hyperglycemia and downregulation of caveolin-1 enhance neuregulin-induced demyelination. Glia 56, 877–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. McGuire, J. F., Rouen, S., Siegfreid, E., Wright, D. E. & Dobrowsky, R. T. Caveolin-1 and altered neuregulin signaling contribute to the pathophysiological progression of diabetic peripheral neuropathy. Diabetes 58, 2677–2686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cermenati, G. et al. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J. Lipid Res. 53, 300–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rachana, K. S., Manu, M. S. & Advirao, G. M. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci. Lett. 629, 110–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Liu, D., Liang, X. & Zhang, H. Effects of high glucose on cell viability and differentiation in primary cultured Schwann cells: potential role of ERK signaling pathway. Neurochem. Res. 41, 1281–1290 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Shettar, A. & Muttagi, G. Developmental regulation of insulin receptor gene in sciatic nerves and role of insulin on glycoprotein P0 in the Schwann cells. Peptides 36, 46–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Agthong, S., Kaewsema, A., Tanomsridejchai, N. & Chentanez, V. Activation of MAPK ERK in peripheral nerve after injury. BMC Neurosci. 7, 45 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Napoli, I. et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73, 729–742 (2012). This study demonstrates how prolonged MAPK activation in Schwann cells may underlie reduced expression of myelin components.

    Article  CAS  PubMed  Google Scholar 

  151. Cheng, H. T., Dauch, J. R., Hayes, J. M., Yanik, B. M. & Feldman, E. L. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol. Dis. 45, 280–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Tomlinson, D. R. & Gardiner, N. J. Glucose neurotoxicity. Nat. Rev. Neurosci. 9, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Tan, A. M., Samad, O. A., Dib-Hajj, S. D. & Waxman, S. G. Virus-mediated knockdown of Nav1.3 in dorsal root ganglia of STZ-induced diabetic rats alleviates tactile allodynia. Mol. Med. 21, 544–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kanazawa, Y. et al. The Rho-kinase inhibitor fasudil restores normal motor nerve conduction velocity in diabetic rats by assuring the proper localization of adhesion-related molecules in myelinating Schwann cells. Exp. Neurol. 247, 438–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Suzuki, T., Sekido, H., Kato, N., Nakayama, Y. & Yabe-Nishimura, C. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway. J. Neurochem. 91, 1430–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Tosaki, T. et al. Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons. Exp. Neurol. 213, 381–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Ebenezer, G. J. et al. Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. Brain 134, 1853–1863 (2011). A study investigating the interplay between blood vessels, axons and Schwann cells during regeneration, and how Schwann cell regrowth seemed to be atrophic in patients with diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Delaney, C. L., Russell, J. W., Cheng, H. L. & Feldman, E. L. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J. Neuropathol. Exp. Neurol. 60, 147–160 (2001). Study describing the mechanism underlying Schwann cell death on hyperglycaemia.

    Article  CAS  PubMed  Google Scholar 

  159. Vincent, A. M., Brownlee, M. & Russell, J. W. Oxidative stress and programmed cell death in diabetic neuropathy. Ann. N. Y. Acad. Sci. 959, 368–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Taiana, M. M. et al. Neutralization of schwann cell-secreted VEGF is protective to in vitro and in vivo experimental diabetic neuropathy. PLoS ONE 9, e108403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Habash, T., Saleh, A., Roy Chowdhury, S. K., Smith, D. R. & Fernyhough, P. The proinflammatory cytokine, interleukin-17A, augments mitochondrial function and neurite outgrowth of cultured adult sensory neurons derived from normal and diabetic rats. Exp. Neurol. 273, 177–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Singh, B. et al. Peripheral neuron plasticity is enhanced by brief electrical stimulation and overrides attenuated regrowth in experimental diabetes. Neurobiol. Dis. 83, 134–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Han, J. W., Choi, D., Lee, M. Y., Huh, Y. H. & Yoon, Y.-S. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant. 25, 313–326 (2016).

    Article  PubMed  Google Scholar 

  164. Baeza-Raja, B. et al. p75 Neurotrophin receptor regulates energy balance in obesity. Cell Rep. 14, 255–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Meeker, R. B. & Williams, K. S. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen. Res. 10, 721–725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou, X.-F. & Li, H.-Y. Roles of glial p75NTR in axonal regeneration. J. Neurosci. Res. 85, 1601–1605 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Quattrini, C. et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56, 2148–2154 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Halim, N. D. et al. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58, 1168–1176 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zochodne, D. W. Sensory neurodegeneration in diabetes: beyond glucotoxicity. Int. Rev. Neurobiol. 127, 151–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Fernyhough, P., Willars, G. B., Lindsay, R. M. & Tomlinson, D. R. Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neurones. Brain Res. 607, 117–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  171. Guo, G., Kan, M., Martinez, J. A. & Zochodne, D. W. Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol. Dis. 43, 414–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Grote, C. W. et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol. Commun. 1, 15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zochodne, D. W. Diabetes and the plasticity of sensory neurons. Neurosci. Lett. 596, 60–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Akude, E. et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 60, 288–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huang, T. J. et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 52, 2129–2136 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Fernyhough, P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr. Diab. Rep. 15, 89–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Jensen, T. S. & Baron, R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102, 1–8 (2003).

    Article  PubMed  Google Scholar 

  178. Jensen, T. S. & Finnerup, N. B. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13, 924–935 (2014).

    Article  PubMed  Google Scholar 

  179. Truini, A. et al. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy. J. Neurol. 260, 761–766 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Hoeijmakers, J. G., Faber, C. G., Merkies, I. S. & Waxman, S. G. Channelopathies, painful neuropathy, and diabetes: which way does the causal arrow point? Trends Mol. Med. 20, 544–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Tesfaye, S., Boulton, A. J. & Dickenson, A. H. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36, 2456–2465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Truini, A. et al. Does the epidermal nerve fibre density measured by skin biopsy in patients with peripheral neuropathies correlate with neuropathic pain? Pain 155, 828–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Truini, A., Garcia-Larrea, L. & Cruccu, G. Reappraising neuropathic pain in humans — how symptoms help disclose mechanisms. Nat. Rev. Neurol. 9, 572–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Peltier, A., Goutman, S. A. & Callaghan, B. C. Painful diabetic neuropathy. BMJ 348, g1799 (2014).

    Article  PubMed  Google Scholar 

  185. Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 11, 521–534 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Vinik, A. I., Nevoret, M., Casellini, C. & Parson, H. Neurovascular function and sudorimetry in health and disease. Curr. Diab. Rep. 13, 517–532 (2013).

    Article  PubMed  Google Scholar 

  187. Pop-Busui, R., Lu, J., Lopes, N. & Jones, T. L. BARI 2D Investigators. Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort. J. Peripher. Nerv. Syst. 14, 1–13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Abbott, C. A., Malik, R. A., van Ross, E. R. E., Kulkarni, J. & Boulton, A. J. M. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34, 2220–2224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bouhassira, D., Letanoux, M. & Hartemann, A. Chronic pain with neuropathic characteristics in diabetic patients: a French cross-sectional study. PLoS ONE 8, e74195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Daousi, C. et al. Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet. Med. 21, 976–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Dublin, P. & Hanani, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav. Immun. 21, 592–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Huang, L.-Y. M., Gu, Y. & Chen, Y. Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61, 1571–1581 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gardiner, N. J. et al. Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes. Brain Res. 1175, 143–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Berti-Mattera, L. N., Larkin, B., Hourmouzis, Z., Kern, T. S. & Siegel, R. E. NF-κB subunits are differentially distributed in cells of lumbar dorsal root ganglia in naïve and diabetic rats. Neurosci. Lett. 490, 41–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Hanani, M., Blum, E., Liu, S., Peng, L. & Liang, S. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. J. Cell. Mol. Med. 18, 2367–2371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liu, S. et al. LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol. Brain 9, 44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr Páll Karlsson from the Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, for providing the pictures of unmyelinated fibres from the human skin biopsy samples. We would also like to thank Ken Kragsfeldt from the Clinical Institute, Aarhus University, for the graphical design. This work has been made possible thanks to a challenge grant from the Novo Nordisk Foundation (NNF14OC0011633) and an NIH grant (NS081082).

Author information

Authors and Affiliations

Authors

Contributions

N.P.G., C.B.V, L.Ø., N.A.C. and T.S.J. researched data for the article and wrote the article. N.P.G., C.B.V, H.A., N.A.C. and T.S.J. made substantial contributions to discussion of the content of the article. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Nádia P. Gonçalves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Prediabetes

A condition in which blood glucose levels are higher than normal but not high enough to be considered as type 2 diabetes; individuals with prediabetes often develop diabetic neuropathy.

Dependence receptors

Proteins that mediate apoptosis by monitoring the absence of certain trophic factors.

Basal lamina

Sheets of extracellular matrix that are secreted by Schwann cells and surround a nerve.

Endoneurium

A layer of interstitial connective tissue that surrounds all axons, thereby separating individual nerve fibres.

Radial sorting

The process that underlies selection of one axon for myelination by a Schwann cell during development.

Capillary dysfunction

A state of dysregulated capillary blood flow patterns, in which oxygen, glucose and other diffusible molecules cannot be extracted efficiently by the tissue; uptake of these molecules can become critically impaired, although reduced tissue blood supply is not obvious.

C-peptide

A short polypeptide that is cleaved from proinsulin in the production of insulin, and can be measured in the blood.

Coupled respiration

A process in which oxygen uptake is dependent on the presence of ADP and phosphate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, N., Vægter, C., Andersen, H. et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 13, 135–147 (2017). https://doi.org/10.1038/nrneurol.2016.201

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing