Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New technologies for the assessment of neuropathies

Key Points

  • Ultrasonography has an established role in the investigation of nerve entrapment syndromes and ambiguous neurophysiological findings, and an emerging role in the assessment of diffuse polyneuropathies

  • Magnetic resonance neurography has a supportive role in the diagnostic workup of inflammatory neuropathies, can provide additional information in entrapment neuropathies and has an emerging role in diffuse polyneuropathies

  • Skin biopsy is a minimally invasive technique for diagnosing small-fibre neuropathies, can be used to assess large myelinated nerve fibres, and can provide a quantitative assessment of autonomic pathology

  • Confocal corneal microscopy is a noninvasive technique for detecting small-fibre loss in neuropathies, and findings with this technique correlate with those of skin biopsy in small-fibre neuropathies

  • Microneurography is a minimally invasive technique for the investigation of physiological properties and pathological changes in small-nerve fibres

Abstract

Technical advances are rapidly changing the clinical and instrumental approach to peripheral nerve diseases. Magnetic resonance neurography, diffusion tensor imaging and nerve ultrasonography are increasingly entering the diagnostic workup of peripheral neuropathies as tools that complement neurophysiology and enable investigation of proximal structures, such as plexuses and roots. Progress in the design of magnetic resonance scanners and sequences, and the development of high-frequency ultrasound probes mean that high-resolution peripheral nerve imaging is possible, enabling detailed examination of nerve size, morphology and internal fascicular structure that can integrate nerve conduction studies into clinical practice. In the growing field of small-fibre neuropathy, in which traditional nerve conduction studies are of little or no use, skin biopsy has become a reliable tool for diagnosis. Corneal confocal microscopy, nociceptive evoked potentials and microneurography are emerging techniques that are mainly used in clinical research settings, but have increasing relevance to clinical practice. We review these new and emerging techniques and their effects on diagnosis, treatment strategies and prognosis in a variety of peripheral neuropathies, including entrapments, brachial plexopathies, immune and inherited neuropathies, and small-fibre neuropathies. We discuss the most promising research findings and their potential for future application in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of nerve compression in carpal tunnel syndrome with ultrasonography.
Figure 2: Ultrasonography to identify cysts that affect peripheral nerves.
Figure 3: 3D magnetic resonance neurography and diffusion tensor imaging in immune-mediated neuropathies.
Figure 4: Representative images of skin biopsy sample sections using different techniques and antibodies that target different structures.

Similar content being viewed by others

References

  1. Watson, J. C. & Dyck, P. J. Peripheral neuropathy: a practical approach to diagnosis and symptom management. Mayo Clin. Proc. 90, 940–951 (2015).

    Article  PubMed  Google Scholar 

  2. Filler, A. G. et al. Magnetic resonance neurography. Lancet 341, 659–661 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Thawait, S. K. et al. High-resolution MR neurography of diffuse peripheral nerve lesions. AJNR Am. J. Neuroradiol. 32, 1365–1372 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Vargas, M. I. et al. New approaches in imaging of the brachial plexus. Eur. J. Radiol. 74, 403–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Viallon, M., Vargas, M. I., Jlassi, H., Lovblad, K. O. & Delavelle, J. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur. Radiol. 18, 1018–1023 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Chhabra, A. et al. MR neurography: past, present, and future. AJR Am. J. Roentgenol. 197, 583–591 (2011).

    Article  PubMed  Google Scholar 

  7. Guggenberger, R. et al. Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265, 194–203 (2012).

    Article  PubMed  Google Scholar 

  8. Brienza, M. et al. 3T diffusion tensor imaging and electroneurography of peripheral nerve: a morphofunctional analysis in carpal tunnel syndrome. J. Neuroradiol. 41, 124–130 (2014).

    Article  PubMed  Google Scholar 

  9. Chhabra, A. et al. Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am. J. Neuroradiol. 34, 802–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Gasparotti, R. et al. Feasibility of diffusion tensor tractography of brachial plexus injuries at 1.5 T. Invest. Radiol. 48, 104–112 (2013).

    Article  PubMed  Google Scholar 

  11. Jengojan, S. et al. Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography. Eur. Radiol. 25, 1678–1683 (2015).

    Article  PubMed  Google Scholar 

  12. Kasprian, G. et al. Peripheral nerve tractography in soft tissue tumors: a preliminary 3-tesla diffusion tensor magnetic resonance imaging study. Muscle Nerve 51, 338–345 (2015).

    Article  PubMed  Google Scholar 

  13. Ohana, M. et al. 3T tractography of the median nerve: optimisation of acquisition parameters and normative diffusion values. Diagn. Interv. Imaging 93, 775–784 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Simon, N. G. et al. High-resolution ultrasonography and diffusion tensor tractography map normal nerve fascicles in relation to schwannoma tissue prior to resection. J. Neurosurg. 120, 1113–1117 (2014).

    Article  PubMed  Google Scholar 

  15. Mizisin, A. P. & Weerasuriya, A. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol. 121, 291–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Aagaard, B. D., Maravilla, K. R. & Kliot, M. Magnetic resonance neurography: magnetic resonance imaging of peripheral nerves. Neuroimaging Clin. N. Am. 11, 131–146 (2001).

    Google Scholar 

  17. Stoll, G., Bendszus, M., Perez, J. & Pham, M. Magnetic resonance imaging of the peripheral nervous system. J. Neurol. 256, 1043–1051 (2009).

    Article  PubMed  Google Scholar 

  18. Bendszus, M., Koltzenburg, M., Wessig, C. & Solymosi, L. Sequential MR imaging of denervated muscle: experimental study. AJNR Am. J. Neuroradiol. 23, 1427–1431 (2002).

    PubMed  Google Scholar 

  19. Bendszus, M. et al. MR imaging in the differential diagnosis of neurogenic foot drop. AJNR Am. J. Neuroradiol. 24, 1283–1289 (2003).

    PubMed  Google Scholar 

  20. Kim, S. J. et al. MR imaging mapping of skeletal muscle denervation in entrapment and compressive neuropathies. Radiographics 31, 319–332 (2011).

    Article  PubMed  Google Scholar 

  21. Martinoli, C. et al. Ultrasound of tendons and nerves. Eur. Radiol. 12, 44–55 (2002).

    Article  PubMed  Google Scholar 

  22. Gallardo, E., Noto, Y. & Simon, N. G. Ultrasound in the diagnosis of peripheral neuropathy: structure meets function in the neuromuscular clinic. J. Neurol. Neurosurg. Psychiatry 86, 1066–1074 (2015).

    Article  PubMed  Google Scholar 

  23. Patel, P., Norbury, J. W. & Fang, X. Sonographic measurements of the ulnar nerve at the elbow with different degrees of elbow flexion. PM R 6, 395–399 (2014).

    Article  PubMed  Google Scholar 

  24. Hobson-Webb, L. D., Massey, J. M., Juel, V. C. & Sanders, D. B. The ultrasonographic wrist-to-forearm median nerve area ratio in carpal tunnel syndrome. Clin. Neurophysiol. 119, 1353–1357 (2008).

    Article  PubMed  Google Scholar 

  25. Padua, L. et al. Intra- and internerve cross-sectional area variability: new ultrasound measures. Muscle Nerve 45, 730–733 (2012).

    Article  PubMed  Google Scholar 

  26. Borire, A. A. et al. Utility of maximum perfusion sity as an ultrasonographic marker of intraneural blood flow. Muscle Nerve 55, 77–83 (2017).

    Article  PubMed  Google Scholar 

  27. Frijlink, D. W., Brekelmans, G. J. & Visser, L. H. Increased nerve vascularization detected by color Doppler sonography in patients with ulnar neuropathy at the elbow indicates axonal damage. Muscle Nerve 47, 188–193 (2013).

    Article  PubMed  Google Scholar 

  28. Vijayan, J., Chan, Y. C., Therimadasamy, A. & Wilder-Smith, E. P. Role of combined B-mode and Doppler sonography in evaluating neurolymphomatosis. Neurology 85, 752–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, M. J. & Cartwright, M. S. A pilot study of strain elastography in the diagnosis of carpal tunnel syndrome. J. Clin. Neurophysiol. http://dx.doi.org/10.1097/WNP.0000000000000334 (2016).

  30. Greening, J. & Dilley, A. Posture-induced changes in peripheral nerve stiffness measured by ultrasound shear-wave elastography. Muscle Nerve 55, 213–222 (2017).

    Article  PubMed  Google Scholar 

  31. Donovan, A., Rosenberg, Z. S. & Cavalcanti, C. F. MR imaging of entrapment neuropathies of the lower extremity. Part 2. The knee, leg, ankle, and foot. Radiographics 30, 1001–1019 (2010).

    Article  PubMed  Google Scholar 

  32. Petchprapa, C. N. et al. MR imaging of entrapment neuropathies of the lower extremity. Part 1. The pelvis and hip. Radiographics 30, 983–1000 (2010).

    Article  PubMed  Google Scholar 

  33. Cartwright, M. S. & Walker, F. O. Neuromuscular ultrasound in common entrapment neuropathies. Muscle Nerve 48, 696–704 (2013).

    Article  PubMed  Google Scholar 

  34. Trivedi, J. R., Phillips, L. & Chhabra, A. Hereditary and acquired polyneuropathy conditions of the peripheral nerves: clinical considerations and MR neurography imaging. Semin. Musculoskelet. Radiol. 19, 130–136 (2015).

    Article  PubMed  Google Scholar 

  35. Chhabra, A. Peripheral MR neurography: approach to interpretation. Neuroimaging Clin. N. Am. 24, 79–89 (2014).

    Article  PubMed  Google Scholar 

  36. Cartwright, M. S. et al. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. Muscle Nerve 46, 287–293 (2012).

    Article  PubMed  Google Scholar 

  37. Vanderschueren, G. A., Meys, V. E. & Beekman, R. Doppler sonography for the diagnosis of carpal tunnel syndrome: a critical review. Muscle Nerve 50, 159–163 (2014).

    Article  PubMed  Google Scholar 

  38. Fowler, J. R., Gaughan, J. P. & Ilyas, A. M. The sensitivity and specificity of ultrasound for the diagnosis of carpal tunnel syndrome: a meta-analysis. Clin. Orthop. Relat. Res. 469, 1089–1094 (2011).

    Article  PubMed  Google Scholar 

  39. Padua, L. et al. Carpal tunnel syndrome: ultrasound, neurophysiology, clinical and patient-oriented assessment. Clin. Neurophysiol. 119, 2064–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Jarvik, J. G. et al. MR nerve imaging in a prospective cohort of patients with suspected carpal tunnel syndrome. Neurology 58, 1597–1602 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Campagna, R. et al. MRI assessment of recurrent carpal tunnel syndrome after open surgical release of the median nerve. AJR Am. J. Roentgenol. 193, 644–650 (2009).

    Article  PubMed  Google Scholar 

  42. Heckel, A. et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS ONE 10, e0130833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koh, S. H. et al. A comparison of the performance of anatomical MRI and DTI in diagnosing carpal tunnel syndrome. Eur. J. Radiol. 83, 2065–2073 (2014).

    Article  PubMed  Google Scholar 

  44. Wang, H., Ma, J., Zhao, L., Wang, Y. & Jia, X. Utility of MRI diffusion tensor imaging in carpal tunnel syndrome: a meta-analysis. Med. Sci. Monit. 22, 736–742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Omejec, G., Zgur, T. & Podnar, S. Diagnostic accuracy of ultrasonographic and nerve conduction studies in ulnar neuropathy at the elbow. Clin. Neurophysiol. 126, 1797–1804 (2015).

    Article  PubMed  Google Scholar 

  46. Bayrak, A. O., Bayrak, I. K., Turker, H., Elmali, M. & Nural, M. S. Ultrasonography in patients with ulnar neuropathy at the elbow: comparison of cross-sectional area and swelling ratio with electrophysiological severity. Muscle Nerve 41, 661–666 (2010).

    PubMed  Google Scholar 

  47. Okamoto, M., Abe, M., Shirai, H. & Ueda, N. Morphology and dynamics of the ulnar nerve in the cubital tunnel. Observation by ultrasonography. J. Hand Surg. Br. 25, 85–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Yoon, J. S., Walker, F. O. & Cartwright, M. S. Ultrasonographic swelling ratio in the diagnosis of ulnar neuropathy at the elbow. Muscle Nerve 38, 1231–1235 (2008).

    Article  PubMed  Google Scholar 

  49. Volpe, A. et al. Ultrasound evaluation of ulnar neuropathy at the elbow: correlation with electrophysiological studies. Rheumatology (Oxford) 48, 1098–1101 (2009).

    Article  Google Scholar 

  50. Baumer, P. et al. Ulnar neuropathy at the elbow: MR neurography–nerve T2 signal increase and caliber. Radiology 260, 199–206 (2011).

    Article  PubMed  Google Scholar 

  51. Pham, M. et al. Anterior interosseous nerve syndrome: fascicular motor lesions of median nerve trunk. Neurology 82, 598–606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baumer, P. et al. Posterior interosseous neuropathy: supinator syndrome versus fascicular radial neuropathy. Neurology 87, 1884–1891 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Erra, C. et al. Secondary posterior interosseous nerve lesions associated with humeral fractures. Muscle Nerve 53, 375–378 (2016).

    Article  PubMed  Google Scholar 

  54. Shahid, K. R. et al. Evaluation of intraneural ganglion cysts using three-dimensional fast spin echo-cube. J. Magn. Reson. Imaging 32, 714–718 (2010).

    Article  PubMed  Google Scholar 

  55. Chhabra, A. et al. MR neurography findings of soleal sling entrapment. AJR Am. J. Roentgenol. 196, W290–W297 (2011).

    Article  PubMed  Google Scholar 

  56. Du, R., Auguste, K. I., Chin, C. T., Engstrom, J. W. & Weinstein, P. R. Magnetic resonance neurography for the evaluation of peripheral nerve, brachial plexus, and nerve root disorders. J. Neurosurg. 112, 362–371 (2010).

    Article  PubMed  Google Scholar 

  57. Fisher, S., Wadhwa, V., Manthuruthil, C., Cheng, J. & Chhabra, A. Clinical impact of magnetic resonance neurography in patients with brachial plexus neuropathies. Br. J. Radiol. 89, 20160503 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Park, M. S., Kim du, H. & Sung, D. H. Magnetic resonance neurographic findings in classic idiopathic neuralgic amyotrophy in subacute stage: a report of four cases. Ann. Rehabil. Med. 38, 286–291 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yoshida, T., Sueyoshi, T., Suwazono, S. & Suehara, M. Three-tesla magnetic resonance neurography of the brachial plexus in cervical radiculopathy. Muscle Nerve 52, 392–396 (2015).

    Article  PubMed  Google Scholar 

  60. Seo, T. G., Kim du, H., Kim, I. S. & Son, E. S. Does C5 or C6 radiculopathy affect the signal intensity of the brachial plexus on magnetic resonance neurography? Ann. Rehabil. Med. 40, 362–367 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Aranyi, Z. et al. Ultrasonographic identification of nerve pathology in neuralgic amyotrophy: enlargement, constriction, fascicular entwinement, and torsion. Muscle Nerve 52, 503–511 (2015).

    Article  PubMed  Google Scholar 

  62. Lieba-Samal, D., Jengojan, S., Kasprian, G., Wober, C. & Bodner, G. Neuroimaging of classic neuralgic amyotrophy. Muscle Nerve 54, 1079–1085 (2016).

    Article  PubMed  Google Scholar 

  63. Aralasmak, A. et al. MRI findings in thoracic outlet syndrome. Skeletal Radiol. 41, 1365–1374 (2012).

    Article  PubMed  Google Scholar 

  64. Demondion, X. et al. Thoracic outlet: assessment with MR imaging in asymptomatic and symptomatic populations. Radiology 227, 461–468 (2003).

    Article  PubMed  Google Scholar 

  65. Baumer, P. et al. Thoracic outlet syndrome in 3T MR neurography-fibrous bands causing discernible lesions of the lower brachial plexus. Eur. Radiol. 24, 756–761 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Hixson, K. M., Horris, H. B., McLeod, T. C. & Bacon, C. E. The diagnostic accuracy of clinical diagnostic tests for thoracic outlet syndrome. J. Sport Rehabil. 24, 1–14 (2016).

    Google Scholar 

  67. Massie, R. et al. Diabetic cervical radiculoplexus neuropathy: a distinct syndrome expanding the spectrum of diabetic radiculoplexus neuropathies. Brain 135, 3074–3088 (2012).

    Article  PubMed  Google Scholar 

  68. Cai, Z. et al. Radiation-induced brachial plexopathy in patients with nasopharyngeal carcinoma: a retrospective study. Oncotarget 7, 18887–18895 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Qayyum, A., MacVicar, A. D., Padhani, A. R., Revell, P. & Husband, J. E. Symptomatic brachial plexopathy following treatment for breast cancer: utility of MR imaging with surface-coil techniques. Radiology 214, 837–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Van den Bergh, P. Y. et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society — first revision. Eur. J. Neurol. 17, 356–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Gasparotti, R. et al. Neuroimaging in diagnosis of atypical polyradiculoneuropathies: report of three cases and review of the literature. J. Neurol. 262, 1714–1723 (2015).

    Article  PubMed  Google Scholar 

  72. Shibuya, K. et al. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 77, 333–337 (2015).

    Article  PubMed  Google Scholar 

  73. Kakuda, T. et al. Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology 53, 955–960 (2011).

    Article  PubMed  Google Scholar 

  74. Markvardsen, L. H., Vaeggemose, M., Ringgaard, S. & Andersen, H. Diffusion tensor imaging can be used to detect lesions in peripheral nerves in patients with chronic inflammatory demyelinating polyneuropathy treated with subcutaneous immunoglobulin. Neuroradiology 58, 745–752 (2016).

    Article  PubMed  Google Scholar 

  75. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society — first revision. J. Peripher. Nerv. Syst. 15, 295–301 (2010).

  76. van Es, H. W. et al. Magnetic resonance imaging of the brachial plexus in patients with multifocal motor neuropathy. Neurology 48, 1218–1224 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Ellegala, D. B. et al. Characterization of genetically defined types of Charcot–Marie–Tooth neuropathies by using magnetic resonance neurography. J. Neurosurg. 102, 242–245 (2005).

    Article  PubMed  Google Scholar 

  78. Cellerini, M., Salti, S., Desideri, V. & Marconi, G. MR imaging of the cauda equina in hereditary motor sensory neuropathies: correlations with sural nerve biopsy. AJNR Am. J. Neuroradiol. 21, 1793–1798 (2000).

    CAS  PubMed  Google Scholar 

  79. Sinclair, C. D. et al. MRI shows increased sciatic nerve cross sectional area in inherited and inflammatory neuropathies. J. Neurol. Neurosurg. Psychiatry 82, 1283–1286 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Plante-Bordeneuve, V. & Said, G. Familial amyloid polyneuropathy. Lancet Neurol. 10, 1086–1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Adams, D. et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr. Opin. Neurol. 29 (Suppl. 1), S14–S26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kollmer, J. et al. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain 138, 549–562 (2015).

    Article  PubMed  Google Scholar 

  83. Granata, G. et al. Ultrasound evaluation in transthyretin-related amyloid neuropathy. Muscle Nerve 50, 372–376 (2014).

    Article  PubMed  Google Scholar 

  84. Grimm, A. et al. Ultrasound pattern sum score, homogeneity score and regional nerve enlargement index for differentiation of demyelinating inflammatory and hereditary neuropathies. Clin. Neurophysiol. 127, 2618–2624 (2016).

    Article  PubMed  Google Scholar 

  85. Sugimoto, T. et al. Ultrasonographic nerve enlargement of the median and ulnar nerves and the cervical nerve roots in patients with demyelinating Charcot–Marie–Tooth disease: distinction from patients with chronic inflammatory demyelinating polyneuropathy. J. Neurol. 260, 2580–2587 (2013).

    Article  PubMed  Google Scholar 

  86. Zaidman, C. M., Harms, M. B. & Pestronk, A. Ultrasound of inherited versus acquired demyelinating polyneuropathies. J. Neurol. 260, 3115–3121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Padua, L. et al. Heterogeneity of root and nerve ultrasound pattern in CIDP patients. Clin. Neurophysiol. 125, 160–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Kerasnoudis, A., Pitarokoili, K., Haghikia, A., Gold, R. & Yoon, M. S. Nerve ultrasound protocol in differentiating chronic immune-mediated neuropathies. Muscle Nerve 54, 864–871 (2016).

    Article  PubMed  Google Scholar 

  89. Yiu, E. M. et al. Peripheral nerve ultrasound in pediatric Charcot–Marie–Tooth disease type 1A. Neurology 84, 569–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Grimm, A. et al. Ultrasound aspects in therapy-naive CIDP compared to long-term treated CIDP. J. Neurol. 263, 1074–1082 (2016).

    Article  PubMed  Google Scholar 

  91. Zaidman, C. M., Al-Lozi, M. & Pestronk, A. Peripheral nerve size in normals and patients with polyneuropathy: an ultrasound study. Muscle Nerve 40, 960–966 (2009).

    Article  PubMed  Google Scholar 

  92. Goedee, H. S., Brekelmans, G. J. & Visser, L. H. Multifocal enlargement and increased vascularization of peripheral nerves detected by sonography in CIDP: a pilot study. Clin. Neurophysiol. 125, 154–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Scheidl, E. et al. Ultrasonography of MADSAM neuropathy: focal nerve enlargements at sites of existing and resolved conduction blocks. Neuromuscul. Disord. 22, 627–631 (2012).

    Article  PubMed  Google Scholar 

  94. Beekman, R. et al. Ultrasonography shows extensive nerve enlargements in multifocal motor neuropathy. Neurology 65, 305–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Kerasnoudis, A., Pitarokoili, K., Behrendt, V., Gold, R. & Yoon, M. S. Multifocal motor neuropathy: correlation of nerve ultrasound, electrophysiological, and clinical findings. J. Peripher. Nerv. Syst. 19, 165–174 (2014).

    Article  PubMed  Google Scholar 

  96. Grimm, A. et al. Nerve ultrasound for differentiation between amyotrophic lateral sclerosis and multifocal motor neuropathy. J. Neurol. 262, 870–880 (2015).

    Article  PubMed  Google Scholar 

  97. Loewenbruck, K. F. et al. Nerve ultrasound in the differentiation of multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis with predominant lower motor neuron disease (ALS/LMND). J. Neurol. 263, 35–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Lauria, G. & Lombardi, R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ 334, 1159–1162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lauria, G. et al. Trigeminal small-fiber sensory neuropathy causes burning mouth syndrome. Pain 115, 332–337 (2005).

    Article  PubMed  Google Scholar 

  100. Gemignani, F. et al. Non-length dependent small fiber neuropathy. a prospective case series. J. Peripher. Nerv. Syst. 15, 57–62 (2010).

    Article  PubMed  Google Scholar 

  101. Gorson, K. C. et al. Non-length dependent small fibre neuropathy/ganglionopathy. J. Neurol. Neurosurg. Psychiatry 79, 163–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Devigili, G. et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 131, 1912–1925 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lauria, G., Merkies, I. S. & Faber, C. G. Small fibre neuropathy. Curr. Opin. Neurol. 25, 542–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Gibbons, C. H. & Freeman, R. Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain 138, 43–52 (2015).

    Article  PubMed  Google Scholar 

  105. Cazzato, D. et al. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology 87, 155–159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Faber, C. G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl Acad. Sci. USA 109, 19444–19449 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Huang, J. et al. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 137, 1627–1642 (2014).

    Article  PubMed  Google Scholar 

  109. Han, C. et al. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 135, 2613–2628 (2012).

    Article  PubMed  Google Scholar 

  110. Martinelli-Boneschi, F. et al. COL6A5 variants in familial neuropathic chronic itch. Brain http://dx.doi.org/10.1093/brain/aww343 (2017).

  111. Tesfaye, S. et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33, 2285–2293 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Malik, R. et al. Small fiber neuropathy: role in the diagnosis of diabetic sensorimotor polyneuropathy. Diabetes Metab. Res. Rev. 27, 678–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Dyck, P. J. et al. Introduction of automated systems to evaluate touch-pressure, vibration, and thermal cutaneous sensation in man. Ann. Neurol. 4, 502–510 (1978).

    Article  CAS  PubMed  Google Scholar 

  114. Fruhstorfer, H., Lindblom, U. & Schmidt, W. C. Method for quantitative estimation of thermal thresholds in patients. J. Neurol. Neurosurg. Psychiatry 39, 1071–1075 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lauria, G. et al. Tubule and neurofilament immunoreactivity in human hairy skin: markers for intraepidermal nerve fibers. Muscle Nerve 30, 310–316 (2004).

    Article  PubMed  Google Scholar 

  116. Lauria, G. et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J. Peripher. Nerv. Syst. 11, 262–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Holland, N. R. et al. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann. Neurol. 44, 47–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Nolano, M. et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann. Neurol. 54, 197–205 (2003).

    Article  PubMed  Google Scholar 

  119. Nolano, M. et al. Quantification of pilomotor nerves. A new tool to evaluate autonomic involvement in diabetes. Neurology 75, 1089–1097 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Gibbons, C. H., Illigens, B. M., Wang, N. & Freeman, R. Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve 42, 112–119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. McCarthy, B. G. et al. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology 45, 1848–1855 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Kennedy, W. R. & Wendelschafer-Crabb, G. The innervation of human epidermis. J. Neurol. Sci. 115, 184–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, L., Hilliges, M., Jernberg, T., Wiegleb-Edstrom, D. & Johansson, O. Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res. 261, 25–33 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. McArthur, J. C., Stocks, E. A., Hauer, P., Cornblath, D. R. & Griffin, J. W. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch. Neurol. 55, 1513–1520 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Lauria, G. et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J. Peripher. Nerv. Syst. 15, 202–207 (2010).

    Article  PubMed  Google Scholar 

  126. Provitera, V. et al. A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur. J. Neurol. 23, 333–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Panoutsopoulou, I. G., Luciano, C. A., Wendelschafer-Crabb, G., Hodges, J. S. & Kennedy, W. R. Epidermal innervation in healthy children and adolescents. Muscle Nerve 51, 378–384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lauria, G. et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. J. Periph. Nerv. Syst. 15, 79–92 (2010).

    Article  Google Scholar 

  129. Nolano, M. et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J. Peripher. Nerv. Syst. 20, 387–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Lauria, G. et al. Side and time variability of intraepidermal nerve fiber density. Neurology 84, 2368–2371 (2015).

    Article  PubMed  Google Scholar 

  131. Seger, S. et al. A semi-automated method to assess intraepidermal nerve fibre density in human skin biopsies. Histopathology 68, 657–665 (2015).

    Article  PubMed  Google Scholar 

  132. Lauria, G. et al. Morphometry of dermal nerve fibers in human skin. Neurology 77, 242–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Vlckova-Moravcova, E., Bednarik, J., Dusek, L., Toyka, K. V. & Sommer, C. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve 37, 50–60 (2008).

    Article  PubMed  Google Scholar 

  134. Provitera, V. et al. Myelinated nerve endings in human skin. Muscle Nerve 35, 767–775 (2007).

    Article  PubMed  Google Scholar 

  135. Manganelli, F. et al. Charcot–Marie–Tooth disease: new insights from skin biopsy. Neurology 85, 1202–1208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nolano, M. et al. Small nerve fiber involvement in CMT1A. Neurology 84, 407–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gibbons, C. H., Illigens, B. M., Wang, N. & Freeman, R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology 72, 1479–1486 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chao, C. C. et al. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann. Neurol. 78, 272–283 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, Y. et al. Factors influencing sweat gland innervation in diabetes. Neurology 84, 1652–1659 (2015).

    Article  PubMed  Google Scholar 

  140. Sommer, C., Lindenlaub, T., Zillikens, D., Toyka, K. V. & Naumann, M. Selective loss of cholinergic sudomotor fibers causes anhidrosis in Ross syndrome. Ann. Neurol. 52, 247–250 (2002).

    Article  PubMed  Google Scholar 

  141. Nolano, M. et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain 129, 2119–2131 (2006).

    Article  PubMed  Google Scholar 

  142. Donadio, V. et al. Anhidrosis in multiple system atrophy: a preganglionic sudomotor dysfunction? Mov. Disord. 23, 885–888 (2008).

    Article  PubMed  Google Scholar 

  143. Provitera, V. et al. Postganglionic sudomotor denervation in patients with multiple system atrophy. Neurology 82, 2223–2229 (2014).

    Article  PubMed  Google Scholar 

  144. Nolano, M. et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain 131, 1903–1911 (2008).

    Article  PubMed  Google Scholar 

  145. Doppler, K. et al. Cutaneous neuropathy in Parkinson's disease: a window into brain pathology. Acta Neuropathol. 128, 99–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weis, J. et al. Small-fiber neuropathy in patients with ALS. Neurology 76, 2024–2029 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Nolano, M. et al. Nonmotor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol. Appl. Neurobiol. http://dx.doi.org/10.1111/nan.12332 (2016).

  148. Dalla Bella, E. et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur. J. Neurol. 23, 416–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Truini, A. et al. Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J. Neurol. 262, 1014–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Sassone, J. et al. ALS mouse model SOD1G93A displays early pathology of sensory small fibers associated to accumulation of a neurotoxic splice variant of peripherin. Hum. Mol. Genet. 25, 1588–1599 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Al-Zuhairy, A., Schroder, H. D., Plesner, T., Abildgaard, N. & Sindrup, S. H. Immunostaining of skin biopsy adds no diagnostic value in MGUS-associated peripheral neuropathy. J. Neurol. Sci. 349, 60–64 (2015).

    Article  PubMed  Google Scholar 

  152. Lombardi, R. et al. IgM deposits on skin nerves in anti-myelin-associated glycoprotein neuropathy. Ann. Neurol. 57, 180–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Stalder, A. K. et al. Immunoglobulin M deposition in cutaneous nerves of anti-myelin-associated glycoprotein polyneuropathy patients correlates with axonal degeneration. J. Neuropathol. Exp. Neurol. 68, 148–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Ruts, L. et al. Unmyelinated and myelinated skin nerve damage in Guillain–Barre syndrome: correlation with pain and recovery. Pain 153, 399–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Oliveira-Soto, L. & Efron, N. Morphology of corneal nerves using confocal microscopy. Cornea 20, 374–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Muller, L. J., Marfurt, C. F., Kruse, F. & Tervo, T. M. Corneal nerves: structure, contents and function. Exp. Eye Res. 76, 521–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Tavakoli, M., Petropoulos, I. N. & Malik, R. A. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. J. Diabetes Sci. Technol. 7, 1179–1189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Petroll, W. M., Weaver, M., Vaidya, S., McCulley, J. P. & Cavanagh, H. D. Quantitative 3-dimensional corneal imaging in vivo using a modified HRT-RCM confocal microscope. Cornea 32, e36–e43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Petropoulos, I. N. et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest. Ophthalmol. Vis. Sci. 55, 2071–2078 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dehghani, C. et al. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea 33, 696–702 (2014).

    Article  PubMed  Google Scholar 

  161. Dabbah, M. A., Graham, J., Petropoulos, I. N., Tavakoli, M. & Malik, R. A. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med. Image Anal. 15, 738–747 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Tavakoli, M. et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 38, 838–843 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hossain, P., Sachdev, A. & Malik, R. A. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 366, 1340–1343 (2005).

    Article  PubMed  Google Scholar 

  164. Quattrini, C. et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56, 2148–2154 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, T. et al. Variables associated with corneal confocal microscopy parameters in healthy volunteers: implications for diabetic neuropathy screening. Diabet. Med. 29, e297–e303 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Ziegler, D. et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63, 2454–2463 (2014).

    Article  PubMed  Google Scholar 

  167. Tavakoli, M. et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot–Marie–Tooth disease type 1A patients. Muscle Nerve 46, 698–704 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mimura, T. et al. In vivo confocal microscopy of hereditary sensory and autonomic neuropathy. Curr. Eye Res. 33, 940–945 (2008).

    Article  PubMed  Google Scholar 

  169. Tavakoli, M. et al. Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 40, 976–984 (2009).

    Article  PubMed  Google Scholar 

  170. Lalive, P. H., Truffert, A., Magistris, M. R., Landis, T. & Dosso, A. Peripheral autoimmune neuropathy assessed using corneal in vivo confocal microscopy. Arch. Neurol. 66, 403–405 (2009).

    PubMed  Google Scholar 

  171. Ferrari, G., Gemignani, F. & Macaluso, C. Chemotherapy-associated peripheral sensory neuropathy assessed using in vivo corneal confocal microscopy. Arch. Neurol. 67, 364–365 (2010).

    Article  PubMed  Google Scholar 

  172. Chen, X. et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 38, 1138–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tavakoli, M. et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet. Med. 28, 1261–1267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tavakoli, M. et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62, 254–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Mehra, S. et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 30, 2608–2612 (2007).

    Article  PubMed  Google Scholar 

  176. Le Pera, D., Valeriani, M., Niddam, D., Chen, A. C. & Arendt-Nielsen, L. Contact heat evoked potentials to painful and non-painful stimuli: effect of attention towards stimulus properties. Brain Topogr. 15, 115–123 (2002).

    Article  PubMed  Google Scholar 

  177. Katsarava, Z. et al. A novel method of eliciting pain-related potentials by transcutaneous electrical stimulation. Headache 46, 1511–1517 (2006).

    Article  PubMed  Google Scholar 

  178. Inui, K. & Kakigi, R. Pain perception in humans: use of intraepidermal electrical stimulation. J. Neurol. Neurosurg. Psychiatry 83, 551–556 (2012).

    Article  PubMed  Google Scholar 

  179. Kodaira, M., Inui, K. & Kakigi, R. Evaluation of nociceptive Aδ and C-fiber dysfunction with lidocaine using intraepidermal electrical stimulation. Clin. Neurophysiol. 125, 1870–1877 (2014).

    Article  PubMed  Google Scholar 

  180. Valeriani, M., Pazzaglia, C., Cruccu, G. & Truini, A. Clinical usefulness of laser evoked potentials. Neurophysiol. Clin. 42, 345–353 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Cruccu, G. et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin. Neurophysiol. 119, 1705–1719 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Garcia-Larrea, L., Peyron, R., Laurent, B. & Mauguiere, F. Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8, 3785–3789 (1997).

    Article  CAS  PubMed  Google Scholar 

  183. Bragard, D., Chen, A. C. & Plaghki, L. Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci. Lett. 209, 81–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. Cruccu, G. et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain 126, 2246–2256 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Plaghki, L. & Mouraux, A. How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol. Clin. 33, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Kakigi, R., Inui, K. & Tamura, Y. Electrophysiological studies on human pain perception. Clin. Neurophysiol. 116, 743–763 (2005).

    Article  PubMed  Google Scholar 

  187. Granovsky, Y., Matre, D., Sokolik, A., Lorenz, J. & Casey, K. L. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain 115, 238–247 (2005).

    Article  PubMed  Google Scholar 

  188. Casanova-Molla, J., Grau-Junyent, J. M., Morales, M. & Valls-Sole, J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain 152, 410–418 (2011).

    Article  PubMed  Google Scholar 

  189. Arendt-Nielsen, L. & Chen, A. C. Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiol. Clin. 33, 259–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Atherton, D. D. et al. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 7, 21 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen, A. C., Niddam, D. M. & Arendt-Nielsen, L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci. Lett. 316, 79–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Lagerburg, V. et al. Contact heat evoked potentials: normal values and use in small fiber neuropathy. Muscle Nerve 51, 743–749 (2014).

    Article  Google Scholar 

  193. Obermann, M. et al. Correlation of epidermal nerve fiber density with pain-related evoked potentials in HIV neuropathy. Pain 138, 79–86 (2008).

    Article  PubMed  Google Scholar 

  194. Mueller, D. et al. Electrically evoked nociceptive potentials for early detection of diabetic small-fiber neuropathy. Eur. J. Neurol. 17, 834–841 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Oh, K. J. et al. Pain-related evoked potential in healthy adults. Ann. Rehabil. Med. 39, 108–115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Serra, J. The role of neurophysiology. J. Peripher. Nerv. Syst. 19 (Suppl. 2), S22–S24 (2014).

    Article  PubMed  Google Scholar 

  197. Serra, J., Campero, M., Bostock, H. & Ochoa, J. Two types of C nociceptors in human skin and their behavior in areas of capsaicin-induced secondary hyperalgesia. J. Neurophysiol. 91, 2770–2781 (2004).

    Article  PubMed  Google Scholar 

  198. Serra, J. et al. Double and triple spikes in C-nociceptors in neuropathic pain states: an additional peripheral mechanism of hyperalgesia. Pain 152, 343–353 (2011).

    Article  PubMed  Google Scholar 

  199. Serra, J. et al. Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 153, 42–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Serra, J. et al. C-Nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain 147, 46–53 (2009).

    Article  PubMed  Google Scholar 

  201. Serra, J., Campero, M., Ochoa, J. & Bostock, H. Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin. J. Physiol. 515, 799–811 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Serra, J. et al. Hyperexcitable C nociceptors in fibromyalgia. Ann. Neurol. 75, 196–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Kleggetveit, I. P. et al. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153, 2040–2047 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Hoitsma, E. et al. Abnormal warm and cold sensation thresholds suggestive of small-fiber neuropathy in sarcoidosis. Clin. Neurophysiol. 114, 2326–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S. & Waxman, S. G. Small-fibre neuropathies-advances in diagnosis, pathophysiology and management. Nat. Rev. Neurol. 8, 369–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Hansson, P., Backonja, M. & Bouhassira, D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 129, 256–259 (2007).

    Article  PubMed  Google Scholar 

  207. Shy, M. E. et al. Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60, 898–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Yarnitsky, D., Sprecher, E., Tamir, A., Zaslansky, R. & Hemli, J. A. Variance of sensory threshold measurements: discrimination of feigners from trustworthy performers. J. Neurol. Sci. 125, 186–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  209. Verdugo, R. J. & Ochoa, J. L. Use and misuse of conventional electrodiagnosis, quantitative sensory testing, thermography, and nerve blocks in the evaluation of painful neuropathic syndromes. Muscle Nerve 16, 1056–1062 (1993).

    Article  CAS  PubMed  Google Scholar 

  210. Maier, C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150, 439–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Chong, P. S. & Cros, D. P. Technology literature review: quantitative sensory testing. Muscle Nerve 29, 734–747 (2004).

    Article  PubMed  Google Scholar 

  212. Bakkers, M. et al. Temperature threshold testing: a systematic review. J. Peripher. Nerv. Syst. 18, 7–18 (2013).

    Article  PubMed  Google Scholar 

  213. Backonja, M. M. et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 154, 1807–1819 (2013).

    Article  PubMed  Google Scholar 

  214. Pan, C. et al. Cutaneous innervation in Guillain-Barré syndrome: pathology and clinical correlations. Brain 126, 386–397 (2003).

    Article  PubMed  Google Scholar 

  215. Pittenger, G. L. et al. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care 27, 1974–1979 (2004).

    Article  PubMed  Google Scholar 

  216. Shun, C. T. et al. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 127, 1593–1605 (2004).

    Article  PubMed  Google Scholar 

  217. Sorensen, L., Molyneaux, L. & Yue, D. K. The level of small nerve fiber dysfunction does not predict pain in diabetic neuropathy: a study using quantitative sensory testing. Clin. J. Pain 22, 261–265 (2006).

    Article  PubMed  Google Scholar 

  218. Periquet, M. I. et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology 53, 1641–1647 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. Holland, N. et al. Intraepidermal nerve fibre density in patients with painful sensory neuropathy. Neurology 48, 708–711 (1997).

    Article  CAS  PubMed  Google Scholar 

  220. Facer, P. et al. Correlation of quantitative tests of nerve and target organ dysfunction with skin immunohistology in leprosy. Brain 121, 2239–2247 (1998).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.G., L.P. and G.L. wrote the article. All authors researched data for the article, made substantial contributions to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roberto Gasparotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fat suppression

Magnetic resonance technique used for suppressing the bright signal of fat and improving the visualization of nerves.

Internal fascicular pattern

Degree of visualization of fascicular bundles as distinct entities, with uniform size and signal intensity in intact nerves.

Reformations

Secondary images obtained from 3D datasets with longitudinal display of the nerve course.

Fractional anisotropy

Common diffusion tensor imaging parameter indicating the directional preference of water diffusion within microscopic tissue structures, with physiologically high values in intact peripheral nerves.

Echotexture

Characteristic pattern or structure of tissue layers as seen during ultrasonography.

Luxation

Displacement of the ulnar nerve beyond the tip of the epicondyle during elbow flexion.

Neurogenic thoracic outlet syndrome

Condition resulting from the dynamic compression of the brachial plexus as it travels from the thoracic outlet to the axilla.

Notalgia

Patchy area of dysaesthesia and altered sensation classically located in the midback skin, but occurring also in other areas of the body.

Ehlers–Danlos syndrome

Condition encompassing various heritable soft connective tissue disorders characterized by joint hypermobility, skin texture abnormalities and visceral and vascular fragility or dysfunctions; six major variants are currently recognized.

Ross syndrome

Rare clinical disorder of unknown cause characterized by the triad of tonic pupil, hyporeflexia and segmental anhidrosis.

Holmes–Adie syndrome

Rare clinical disorder of unknown cause characterized by tonic pupil and hyporeflexia, with normal sweating function.

Stroma

Layer of the cornea located behind the Bowman layer and in front of the Descemet membrane, representing 90% of the total corneal thickness and giving the cornea its strength.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparotti, R., Padua, L., Briani, C. et al. New technologies for the assessment of neuropathies. Nat Rev Neurol 13, 203–216 (2017). https://doi.org/10.1038/nrneurol.2017.31

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing