Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vaccine-based immunotherapeutic approaches to gliomas and beyond

Key Points

  • Glioblastoma is the paradigm of tumour-associated immunosuppression

  • Several glioma-specific peptide vaccines, with or without dendritic cell support, are in late clinical development

  • Vaccines can be combined with agents that nonspecifically boost immune responses, such as immune checkpoint inhibitors or TGFβ pathway inhibitors

  • Standardization of clinical trial conduct might facilitate progress in this challenging field of oncology

Abstract

Astrocytic and oligodendroglial gliomas are intrinsic brain tumours characterized by infiltrative growth and resistance to classic cancer therapies, which renders them inevitably lethal. Glioblastoma, the most common type of glioma, also exhibits neoangiogenesis and profound immunosuppressive properties. Accordingly, strategies to revert glioma-associated immunosuppression and promote tumour-directed immune responses have been extensively explored in rodent models and in large clinical trials of tumour immunotherapy. This Review describes vaccination approaches investigated for the treatment of glioma. Several strategies have reached phase III clinical trials, including vaccines targeting epidermal growth factor receptor variant III, and the use of either immunogenic peptides or tumour lysates to stimulate autologous dendritic cells. Other approaches in early phases of clinical development employ multipeptide vaccines such as IMA-950, cytomegalovirus-derived peptides, or tumour-derived peptides such as heat shock protein-96 peptide complexes and the Arg132His mutant form of isocitrate dehydrogenase. However, some preclinical trial data suggest that addition of immunomodulatory reagents such as immune checkpoint inhibitors, transforming growth factor-β inhibitors, signal transducer and activator of transcription 3 inhibitors, or modifiers of tryptophan metabolism could augment the therapeutic activity of vaccination and overcome glioma-associated immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glioma-associated pathways of local and systemic immunosuppression.
Figure 2: Logistical requirements for autologous immune or immune cell-based vaccination for glioblastoma.
Figure 3: Putative mode of action for glioblastoma vaccines generated using tumour lysate or peptides.
Figure 4: Facilitating effective vaccination by neutralizing glioma-associated immunosuppression.

Similar content being viewed by others

References

  1. Nduom, E. K., Weller, M. & Heimberger, A. B. Immunosuppressive mechanisms in glioblastoma. Neuro Oncol. 17 (Suppl. 7), vii9–vii14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mangani, D., Weller, M. & Roth, P. The network of immunosuppressive pathways in glioblastoma. Biochem. Pharmacol. 130, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Roszman, T., Elliott, L. & Brooks, W. Modulation of T-cell function by gliomas. Immunol. Today 12, 370–374 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Schweitzer, T., Vince, G. H., Herbold, C., Roosen, K. & Tonn, J. C. Extraneural metastases of primary brain tumors. J. Neurooncol. 53, 107–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17 (Suppl. 4), iv1–iv62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hartmann, C. et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 120, 707–718 (2010).

    Article  PubMed  Google Scholar 

  8. Bozdag, S. et al. Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels. PLoS ONE 8, e62982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh, T. et al. Immunocompetent murine models for the study of glioblastoma immunotherapy. J. Transl. Med. 12, 107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacobs, V. L., Valdes, P. A., Hickey, W. F. & De Leo, J. A. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro 3, e00063 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Serano, R. D., Pegram, C. N. & Bigner, D. D. Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol. 51, 53–64 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Sampson, J. H. et al. Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion. Neurosurgery 41, 1365–1372 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad, M. et al. How stemlike are sphere cultures from long-term cancer cell lines? Lessons from mouse glioma models. J. Neuropathol. Exp. Neurol. 73, 1062–1077 (2014).

    Article  PubMed  Google Scholar 

  14. Fisher, G. H. et al. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18, 5253–5260 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friese, M. A. et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 63, 8996–9006 (2003).

    CAS  PubMed  Google Scholar 

  17. Ullrich, E., Koch, J., Cerwenka, A. & Steinle, A. New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology 2, e26097 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Herrlinger, U. et al. MIP-1α antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J. Neurooncol. 66, 147–154 (2004).

    Article  PubMed  Google Scholar 

  19. Herrlinger, U. et al. Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther. 4, 345–352 (1997).

    CAS  PubMed  Google Scholar 

  20. Olin, M. R. et al. Superior efficacy of tumor cell vaccines grown in physiologic oxygen. Clin. Cancer Res. 16, 4800–4808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heimberger, A. B. et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J. Neuroimmunol. 103, 16–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Grauer, O. M. et al. Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int. J. Cancer 122, 1794–1802 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Jouanneau, E. et al. Dendritic cells are essential for priming but inefficient for boosting antitumour immune response in an orthotopic murine glioma model. Cancer Immunol. Immunother. 55, 254–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yamanaka, R. et al. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J. Neurosurg. 97, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Prins, R. M., Odesa, S. K. & Liau, L. M. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res. 63, 8487–8491 (2003).

    CAS  PubMed  Google Scholar 

  26. Pellegatta, S. et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res. 66, 10247–10252 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ueda, R. et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin. Cancer Res. 15, 6551–6559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Antonios, J. P. et al. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight 1, e87059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Agarwalla, P., Barnard, Z., Fecci, P., Dranoff, G. & Curry, W. T. Jr. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J. Immunother. 35, 385–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huszthy P. C. et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol. 14, 979–993 (2012).

  31. Heimberger, A. B. et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 9, 4247–4254 (2003).

    CAS  PubMed  Google Scholar 

  32. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Phuphanich, S. et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62, 125–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02149225 (2016).

  35. Bloch, O. et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol. 16, 274–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Chiang, C. L., Coukos, G. & Kandalaft, L. E. Whole tumor antigen vaccines: where are we? Vaccines (Basel) 3, 344–372 (2015).

    Article  CAS  Google Scholar 

  37. Mohme, M., Neidert, M. C., Regli, L., Weller, M. & Martin, R. Immunological challenges for peptide-based immunotherapy in glioblastoma. Cancer Treat. Rev. 40, 248–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weller, M. et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J. Clin. Oncol. 27, 5743–5750 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Weller, M. et al. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int. J. Cancer 134, 2437–2447 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Batra, S. K. et al. Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Differ. 6, 1251–1259 (1995).

    CAS  PubMed  Google Scholar 

  42. Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sampson, J. H. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13, 324–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Schuster, J. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 17, 854–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weller, M. et al. ACT IV: an international, double-blind, phase 3 trial of rindopepimut in newly diagnosed, EGFRvIII-expressing glioblastoma. Neuro Oncol. 18, (Suppl. 6), vi17–vi18 (2016).

    Article  Google Scholar 

  46. Reardon, D. A. et al. ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma [abstract]. J. Clin. Oncol. 33 (Suppl.), 2009 (2015).

    Article  Google Scholar 

  47. Gill, B. J. et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc. Natl Acad. Sci. USA 111, 12550–12555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson, B. F., Clay, T. M., Hobeika, A. C., Lyerly, H. K. & Morse, M. A. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Exp. Opin. Biol. Ther. 7, 449–460 (2007).

    Article  CAS  Google Scholar 

  49. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wick, W. et al. EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma [abstract]. J. Clin. Oncol. 34 (Suppl.), 2001 (2016).

    Article  Google Scholar 

  53. Johnson, L. A. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl. Med. 7, 275ra22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pollack, I. F. et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J. Clin. Oncol. 32, 2050–2058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okada, H. et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin. Cancer Res. 21, 286–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Dutoit, V. et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135, 1042–1054 (2012).

    Article  PubMed  Google Scholar 

  57. Rampling, R. et al. A Cancer Research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin. Cancer Res. 22, 4776–4785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Britten, C. M. et al. The regulatory landscape for actively personalized cancer immunotherapies. Nat. Biotechnol. 31, 880–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02287428 (2016).

  60. Ardon, H. et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer 54, 519–525 (2010).

    PubMed  Google Scholar 

  61. Ardon, H. et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol. Immunother. 61, 2033–2044 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Liau, L. M. et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11, 5515–5525 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Prins, R. M. et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 17, 1603–1615 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00045968 (2016).

  65. Okada, H. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Wen, P. et al. A randomized double blind placebo-controlled phase 2 trial of dendritic cell (DC) vaccine ICT-107 following standard treatment in newly diagnosed patients with GBM. Neuro Oncol. 16 (Suppl. 5), v22 (2014).

    Article  PubMed Central  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02546102 (2017).

  68. Pellegatta, S. et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol. Commun. 3, 4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).

    Article  PubMed  Google Scholar 

  71. Waitkus, M. S., Diplas, B. H. & Yan, H. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol. 18, 16–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Platten, M. & Offringa, R. Cancer immunotherapy: exploiting neoepitopes. Cell Res. 25, 887–888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bunse, L. et al. Proximity ligation assay evaluates IDH1 R132H presentation in gliomas. J. Clin. Invest. 125, 593–606 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Melief, C. J. Mutation-specific T cells for immunotherapy of gliomas. N. Engl. J. Med. 372, 1956–1958 (2015).

    Article  PubMed  Google Scholar 

  75. Schumacher, T., Bunse, L., Wick, W. & Platten, M. Mutant IDH1: an immunotherapeutic target in tumors. Oncoimmunology 3, e974392 (2014).

    Article  PubMed  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02454634 (2016).

  77. Li, S. et al. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neuro Oncol. 15, 57–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Suto, R. & Srivastava, P. K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–1588 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Ampie, L. et al. Heat shock protein vaccines against glioblastoma: from bench to bedside. J. Neurooncol. 123, 441–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Crane, C. A. et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 kD chaperone protein. Clin. Cancer Res. 19, 205–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03018288 (2017).

  83. Mitchell, D. A. et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol. 10, 10–18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cobbs, C. S. et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62, 3347–3350 (2002).

    CAS  PubMed  Google Scholar 

  85. Prins, R. M., Cloughesy, T. F. & Liau, L. M. Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N. Engl. J. Med. 359, 539–541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baumgarten, P. et al. Human cytomegalovirus infection in tumor cells of the nervous system is not detectable with standardized pathologico-virological diagnostics. Neuro Oncol. 16, 1469–1477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, K. W., Hellstrand, K. & Larsson, E. Absence of cytomegalovirus in high-coverage DNA sequencing of human glioblastoma multiforme. Int. J. Cancer 136, 977–981 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Dziurzynski, K. et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 14, 246–255 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ranganathan, P., Clark, P. A., Kuo, J. S., Salamat, M. S. & Kalejta, R. F. Significant association of multiple human cytomegalovirus genomic loci with glioblastoma multiforme samples. J. Virol. 86, 854–864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Limaye, A. P. et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300, 413–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kleihauer, A. et al. Ex vivo generation of human cytomegalovirus-specific cytotoxic T cells by peptide-pulsed dendritic cells. Br. J. Haematol. 113, 231–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Cho, H. I., Han, H., Kim, C. C. & Kim, T. G. Generation of cytotoxic T lymphocytes specific for human cytomegalovirus using dendritic cells in vitro. J. Immunother. 24, 242–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Raftery, M. J., Schwab, M., Diesner, S., Egerer, G. & Schonrich, G. Dendritic cells cross-presenting viral antigens derived from autologous cells as a sensitive tool for visualization of human cytomegalovirus-reactive CD8+ T cells. Transplantation 73, 998–1002 (2002).

    Article  PubMed  Google Scholar 

  94. Peggs, K. S. & Mackinnon, S. Clinical trials with CMV-specific T cells. Cytotherapy 4, 21–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Szmania, S. et al. Isolation and expansion of cytomegalovirus-specific cytotoxic T lymphocytes to clinical scale from a single blood draw using dendritic cells and HLA-tetramers. Blood 98, 505–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Nair, S. K. et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin. Cancer Res. 20, 2684–2694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Knight, A. et al. CMV-independent lysis of glioblastoma by ex vivo expanded/activated Vδ1+ γδ T cells. PLoS ONE 8, e68729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roth, P. et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin. Cancer Res. 16, 3851–3859 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12, 1113–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hishii, M. et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37, 1160–1166 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Wolpert, F. et al. HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J. Neuroimmunol. 250, 27–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Lemke, D. et al. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin. Cancer Res. 18, 105–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Codo, P. et al. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget 5, 7651–7662 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lauro, G. M., Di Lorenzo, N., Grossi, M., Maleci, A. & Guidetti, B. Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol. 69, 278–282 (1986).

    Article  CAS  PubMed  Google Scholar 

  106. Ichinose, M., Masuoka, J., Shiraishi, T., Mineta, T. & Tabuchi, K. Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol. 18, 37–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Roth, P. et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res. 67, 3540–3544 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Preusser, M., Lim, M., Hafler, D. A., Reardon, D. A. & Sampson, J. H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 11, 504–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Berghoff, A. S. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17, 1064–1075 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Nduom, E. K. et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 18, 195–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Wintterle, S. et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63, 7462–7467 (2003).

    CAS  PubMed  Google Scholar 

  115. Reardon, D. A. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Weiss, T., Weller, M. & Roth, P. Immunotherapy for glioblastoma: concepts and challenges. Curr. Opin. Neurol. 28, 639–646 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Shibahara, I. et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: a clue for successful immunotherapy. Mol. Cancer 14, 41 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aulwurm, S., Wischhusen, J., Friese, M., Borst, J. & Weller, M. Immune stimulatory effects of CD70 override CD70-mediated immune cell apoptosis in rodent glioma models and confer long-lasting antiglioma immunity in vivo. Int. J. Cancer 118, 1728–1735 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Brandes, A. A. et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18, 1146–1156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Platten, M., Weller, M. & Wick, W. Shaping the glioma immune microenvironment through tryptophan metabolism. CNS Oncol. 1, 99–106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin. Cancer Res. 20, 5290–5301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ferguson, S. D., Srinivasan, V. M. & Heimberger, A. B. The role of STAT3 in tumor-mediated immune suppression. J. Neurooncol. 123, 385–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01904123 (2016).

  126. Fecci, P. E. et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66, 3294–3302 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. El Andaloussi, A. & Lesniak, M. S. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. J. Neurooncol. 8, 234–243 (2006).

    Google Scholar 

  128. Grauer, O. M. et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer. 121, 95–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Raychaudhuri, B. et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol. 13, 591–599 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. El Andaloussi, A., Han, Y. & Lesniak, M. S. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J. Neurosurg. 105, 430–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Morse, M. A. et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112, 610–618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacobs, J. F. et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16, 5067–5078 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 29, 208–214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Okada, H. et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 16, e534–e542 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01480479 (2017).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01498328 (2017).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00905060 (2014).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00293423 (2014).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01213407 (2016).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01222221 (2015).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02465268 (2017).

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01814813 (2017).

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02455557 (2017).

Download references

Acknowledgements

The authors' research work is supported by grants from the Canton of Zurich HSM-2 (Hochspezialisierte Medizin 2) programme, the German Research Fund (Deutsche Forschungsgemeinschaft), the Swiss National Science Foundation and the Swiss Cancer League (all to M.W. and P.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript, researched data for the article, undertook review or editing of the manuscript before submission and contributed substantially to discussions of the article content.

Corresponding author

Correspondence to Michael Weller.

Ethics declarations

Competing interests

The authors declare that M.W. has received research grants from Acceleron, Actelion, Bayer, Isarna, Merck Sharp & Dohme, Merck EMD (Emanuel Merck, Darmstadt), Novocure, Piqur and Roche and honoraria for lectures, advisory board participation or consulting from Bristol-Myers Squibb, Celldex, Immunocellular Therapeutics, Isarna, Magforce, Merck Sharp & Dohme, Merck EMD, Northwest Biotherapeutics, Novocure, Pfizer, Roche, Teva and Tocagen. M. Preusser has received research support from Böhringer-Ingelheim, GlaxoSmithKline, Merck Sharp & Dohme and Roche, as well as honoraria for lectures, advisory board participation or consulting from Bristol-Myers Squibb, CMC Contrast, Gerson Lehrman Group, GlaxoSmithKline, Mundipharma, Novartis and Roche. D.A.R. has received research grants from Celldex Therapeutics, Incyte and Midatech, as well as honoraria for lectures, advisory board participation or consulting from Abbvie, Amgen, Bristol-Myers Squibb, Cavion, Celldex Therapeutics, EMD Serono, Genentech (Roche), Inovio, Juno Pharmaceuticals, Merck & Co, Midatech, Momenta Pharmaceuticals, Novartis, Novocure, Oxigene, Regeneron, and Stemline Therapeutics. M. Platten has received research support from Merck and Novartis, as well as honoraria for lectures, consultation or advisory board participation from Alexion, Bayer, Genentech (Roche), Merck & Co, Medac, Miltenyi Biotec, Novartis and Teva. M. Platten also holds patents on isocitrate dehydrogenase vaccines and aryl hydrocarbon receptor inhibition. P.R. has received research support from Merck Sharp & Dohme and honoraria for lectures or advisory board participation from Merck Sharp & Dohme, Molecular Partners, Novartis and Roche. W.W. has received research funding from Apogenix, Böhringer-Ingelheim, Genentech (Roche), Merck Sharp & Dohme and Pfizer, as well as honoraria for participating in a speaker's bureau for Merck Sharp & Dohme and consulting for Genentech (Roche). J.H.S. declares that he is an employee of Annias, a shareholder in Annias and Istari, and has received honoraria for consulting from Celldex, BrainLAB and Medicenna, as well as licensing fees from Celldex.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, M., Roth, P., Preusser, M. et al. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol 13, 363–374 (2017). https://doi.org/10.1038/nrneurol.2017.64

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.64

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer