Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Chlamydia-induced ReA: immune imbalances and persistent pathogens

Abstract

Reactive arthritis (ReA), an inflammatory arthritic condition that is commonly associated with Chlamydia infections, represents a significant health burden, yet is poorly understood. The enigma of this disease is reflected in its problematic name and in its ill-defined pathogenesis. The existence of persistent pathogens in the arthritic joint is acknowledged, but their relevance remains elusive. Progress is being made in understanding the underlying mechanisms of ReA, whereby an imbalance between type 1 and type 2 immune responses seems to be critical in determining susceptibility to disease. Such an imbalance occurs prior to the initiation of an adaptive immune response, suggesting that innate cellular and molecular mechanisms in ReA should be prioritized as fruitful areas for investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between spondyloarthritis, reactive arthritis, and septic arthritis.
Figure 2: Outcomes of a type 1 dominant versus type 2 dominant inflammatory response during chlamydial infection.

Similar content being viewed by others

References

  1. Rich, E., Hook, E. W. 3rd, Alarcón, G. S. & Moreland, L. W. Reactive arthritis in patients attending an urban sexually transmitted diseases clinic. Arthritis Rheum. 39, 1172–1177 (1996).

    Article  CAS  Google Scholar 

  2. Sieper, J. Pathogenesis of reactive arthritis. Curr. Rheumatol. Rep. 3, 412–418 (2001).

    Article  CAS  Google Scholar 

  3. Carter, J. D. & Hudson, A. P. The evolving story of Chlamydia-induced reactive arthritis. Curr. Opin. Rheumatol. 22, 424–430 (2010).

    Article  Google Scholar 

  4. Gérard, H. C., Whittum-Hudson, J. A., Carter, J. D. & Hudson, A. P. The pathogenic role of Chlamydia in spondyloarthritis. Curr. Opin. Rheumatol. 22, 363–367 (2010).

    Article  Google Scholar 

  5. Carter, J. D. et al. Chlamydiae as etiologic agents in chronic undifferentiated spondylarthritis. Arthritis Rheum. 60, 1311–1316 (2009).

    Article  Google Scholar 

  6. Söderlin, M. K., Kautiainen, H., Skogh, T. & Leirisalo-Repo, M. Quality of life and economic burden of illness in very early arthritis. A population based study in Southern Sweden. J. Rheumatol. 31, 1717–1722 (2004).

    PubMed  Google Scholar 

  7. Keat, A. et al. Chlamydia trachomatis and reactive arthritis: the missing link. Lancet 1, 72–74 (1987).

    Article  CAS  Google Scholar 

  8. Brunham, R. C. & Peeling, R. W. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect. Agents Dis. 3, 218–233 (1994).

    CAS  PubMed  Google Scholar 

  9. Stephens, R. S. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11, 44–51 (2003).

    Article  CAS  Google Scholar 

  10. Nanagara, R., Li, F., Beutler, A., Hudson, A. & Schumacher, H. R. Jr. Alteration of Chlamydia trachomatis biologic behavior in synovial membranes. Suppression of surface antigen production in reactive arthritis and Reiter's syndrome. Arthritis Rheum. 38, 1410–1417 (1995).

    Article  CAS  Google Scholar 

  11. Carter, J. D. et al. Combination antibiotics as a treatment for chronic Chlamydia-induced reactive arthritis: a double-blind, placebo-controlled, prospective trial. Arthritis Rheum. 62, 1298–1307 (2010).

    Article  CAS  Google Scholar 

  12. Tarkowski, A. Infection and musculoskeletal conditions: infectious arthritis. Best Pract. Res. Clin. Rheumatol. 20, 1029–1044 (2006).

    Article  CAS  Google Scholar 

  13. Mathews, C. J., Weston, V. C., Jones, A., Field, M. & Coakley, G. Bacterial septic arthritis in adults. Lancet 375, 846–855 (2010).

    Article  Google Scholar 

  14. Moazed, T. C., Kuo, C. C., Grayston, J. T. & Campbell, L. A. Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J. Infect. Dis. 177, 1322–1325 (1998).

    Article  CAS  Google Scholar 

  15. Cotter, T. W., Ramsey, K. H., Miranpuri, G. S., Poulsen, C. E. & Byrne, G. I. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65, 2145–2152 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    Article  CAS  Google Scholar 

  17. Roth, A. et al. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc. Natl Acad. Sci. USA 107, 19502–19507 (2010).

    Article  CAS  Google Scholar 

  18. Rupp, J. et al. Chlamydia pneumoniae directly interferes with HIF-1α stabilization in human host cells. Cell. Microbiol. 9, 2181–2191 (2007).

    Article  CAS  Google Scholar 

  19. Shima, K., Szaszák, M., Solbach, W., Gieffers, J. & Rupp, J. Impact of a low-oxygen environment on the efficacy of antimicrobials against intracellular Chlamydia trachomatis. Antimicrob. Agents Chemother. 55, 2319–2324 (2011).

    Article  CAS  Google Scholar 

  20. Wyrick, P. B. Chlamydia trachomatis persistence in vitro: an overview. J. Infect. Dis. 201 (Suppl. 2), S88–S95 (2010).

    Article  CAS  Google Scholar 

  21. Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA. 100, 8478–8483 (2003).

    Article  CAS  Google Scholar 

  22. Gérard, H. C., Whittum-Hudson, J. A., Schumacher, H. R. Jr & Hudson, A. P. Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb. Pathog. 36, 35–39 (2004).

    Article  Google Scholar 

  23. Droemann, D. et al. Disparate innate immune responses to persistent and acute Chlamydia pneumoniae infection in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 791–797 (2007).

    Article  CAS  Google Scholar 

  24. Zimmerman, H. L. et al. Epidemiologic differences between chlamydia and gonorrhea. Am. J. Public Health 80, 1338–1342 (1990).

    Article  CAS  Google Scholar 

  25. Gerard, H. C. et al. Patients with Chlamydia-associated arthritis have ocular (trachoma), not genital, serovars of C. trachomatis in synovial tissue. Microb. Pathog. 48, 62–68 (2010).

    Article  CAS  Google Scholar 

  26. Kari, L. et al. Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J. Infect. Dis. 197, 449–456 (2008).

    Article  CAS  Google Scholar 

  27. World Health Organization. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overviews and Estimates [online] (2001).

  28. Darville, T. & Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 201 (Suppl. 2), S114–S125 (2010).

    Article  CAS  Google Scholar 

  29. Gottlieb, S. L., Martin, D. H., Xu, F., Byrne, G. I. & Brunham, R. C. Summary: The natural history and immunobiology of Chlamydia trachomatis genital infection and implications for Chlamydia control. J. Infect. Dis. 201 (Suppl. 2), S190–S204 (2010).

    Article  CAS  Google Scholar 

  30. Heo, Y., Parsons, P. J. & Lawrence, D. A. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol. Appl. Pharmacol. 138, 149–157 (1996).

    Article  CAS  Google Scholar 

  31. Inman, R. D. & Chiu, B. Heavy metal exposure reverses genetic resistance to Chlamydia-induced arthritis. Arthritis Res. Ther. 11, R19 (2009).

    Article  Google Scholar 

  32. Rottenberg, M. E., Gigliotti-Rothfuchs, A. & Wigzell, H. The role of IFN-γ in the outcome of chlamydial infection. Curr. Opin. Immunol. 14, 444–451 (2002).

    Article  CAS  Google Scholar 

  33. Inman, R. D. & Chiu, B. Early cytokine profiles in the joint define pathogen clearance and severity of arthritis in chlamydia-induced arthritis in rats. Arthritis Rheum. 54, 499–507 (2006).

    Article  CAS  Google Scholar 

  34. Holland, M. J. et al. T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin. Exp. Immunol. 105, 429–435 (1996).

    Article  CAS  Google Scholar 

  35. Vandooren, B. et al. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 60, 966–975 (2009).

    Article  CAS  Google Scholar 

  36. Smith, J. A. et al. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-γ dysregulation. Arthritis Rheum. 58, 1640–1649 (2008).

    Article  CAS  Google Scholar 

  37. Bas, S., Kvien, T. K., Buchs, N., Fulpius, T. & Gabay, C. Lower level of synovial fluid interferon-γ in HLA-B27-positive than in HLA-B27-negative patients with Chlamydia trachomatis reactive arthritis. Rheumatology (Oxford) 42, 461–467 (2003).

    Article  CAS  Google Scholar 

  38. Yin, Z. et al. Crucial role of interleukin-10/interleukin-12 balance in the regulation of the type 2 T helper cytokine response in reactive arthritis. Arthritis Rheum. 40, 1788–1797 (1997).

    Article  CAS  Google Scholar 

  39. Morrison, S. G., Su, H., Caldwell, H. D. & Morrison, R. P. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4+ T cells but not CD8+ T cells. Infect. Immun. 68, 6979–6987 (2000).

    Article  CAS  Google Scholar 

  40. Jiang, X., Shen, C., Yu, H., Karunakaran, K. P. & Brunham, R. C. Differences in innate immune responses correlate with differences in murine susceptibility to Chlamydia muridarum pulmonary infection. Immunology 129, 556–566 (2010).

    Article  CAS  Google Scholar 

  41. Nagarajan, U. M. et al. MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution. Infect. Immun. 79, 486–498 (2011).

    Article  CAS  Google Scholar 

  42. Bharhani, M. S., Chiu, B., Na, K. S. & Inman, R. D. Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int. Immunol. 21, 859–870 (2009).

    Article  CAS  Google Scholar 

  43. Barteneva, N., Theodor, I., Peterson, E. M. & De La Maza, L. M. Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect. Immun. 64, 4830–4833 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, X. et al. Innate immunity and arthritis: Neutrophil Rac and Toll-like receptor 4 expression define outcomes in infection-triggered arthritis. Arthritis Rheum. 52, 1297–1304 (2005).

    Article  CAS  Google Scholar 

  45. Qiu, H. et al. Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages. J. Immunol. 181, 2092–2102 (2008).

    Article  CAS  Google Scholar 

  46. Iwanaga, T., Shikichi, M., Kitamura, H., Yanase, H. & Nozawa-Inoue, K. Morphology and functional roles of synoviocytes in the joint. Arch. Histol. Cytol. 63, 17–31 (2000).

    Article  CAS  Google Scholar 

  47. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  Google Scholar 

  48. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  Google Scholar 

  49. Manrique, S. Z. et al. Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J. Exp. Med. 208, 1485–1499 (2011).

    Article  CAS  Google Scholar 

  50. Murray, P. J. & Wynn, T. A. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89, 557–563 (2011).

    Article  CAS  Google Scholar 

  51. Baeten, D. et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res. Ther. 7, R359–R369 (2005).

    Article  Google Scholar 

  52. Benoit, M., Desnues, B. & Mege, J. L. Macrophage polarization in bacterial infections. J. Immunol. 181, 3733–3739 (2008).

    Article  CAS  Google Scholar 

  53. Shirey, K. A., Cole, L. E., Keegan, A. D. & Vogel, S. N. Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. J. Immunol. 181, 4159–4167 (2008).

    Article  CAS  Google Scholar 

  54. Chen, B., Stout, R. & Campbell, W. F. Nitric oxide production: a mechanism of Chlamydia trachomatis inhibition in interferon-γ-treated RAW264.7 cells. FEMS Immunol. Med. Microbiol. 14, 109–120 (1996).

    Article  CAS  Google Scholar 

  55. Kuo, C. C., Puolakkainen, M., Lin, T. M., Witte, M. & Campbell, L. A. Mannose-receptor positive and negative mouse macrophages differ in their susceptibility to infection by Chlamydia species. Microb. Pathog. 32, 43–48 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E. Gracey researched data for the article. Both authors contributed equally to discussing the content, writing the article and performing review/editing of the manuscript before submission.

Corresponding author

Correspondence to Robert D. Inman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracey, E., Inman, R. Chlamydia-induced ReA: immune imbalances and persistent pathogens. Nat Rev Rheumatol 8, 55–59 (2012). https://doi.org/10.1038/nrrheum.2011.173

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing