Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defining protein interactions with yeast actin in vivo

Abstract

Using the two-hybrid protein interaction reporter system, actin, profilin, Srv2p and two SH3-containing proteins are found to bind yeast actin in vivo. When tested for ability to interact with 35 actin mutations distributed over the monomer surface, distinct subsets of mutations characteristic for each putative ligand are found to disrupt binding. In particular, the pattern of differential interactions for the actin-act in interaction is consistent with published structures for the actin filament. Despite functional similarities, the patterns of differential interaction for Srv2p and profilin are different. In contrast, the patterns for profilin and the SH3 domain proteins suggest a shared binding site and commonality in mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chien, C., Bartel, P.L., Sternglanz, R. and Fields, S. The two hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. natn. Acad. Sci. U.S.A. 88, 9578–9582 (1991).

    Article  CAS  Google Scholar 

  2. Wertman, K.F., Drubin, D.G. & Botstein, D. Systematic mutational analysis of the yeast ACT1 gene. Genetics 132, 337–350 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Develop. 7, 555–569 (1993).

    Article  CAS  Google Scholar 

  4. Gallwitz, D. & Sures, I. Structure of a split gene: Complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 77, 2546–2550 (1980).

    Article  CAS  Google Scholar 

  5. Ng, R. & Abelson, J. Isolation of the gene for actin in Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 77, 3912–3916 (1980).

    Article  CAS  Google Scholar 

  6. Magdolen, V., Oechsner, U., Muller, G. & Bandlow, W. The intron-containing gene for yeast profilin (PFY) encodes a vital function. Molec. cell. Biol. 8, 5108–5115 (1988).

    Article  CAS  Google Scholar 

  7. Field, J. et al. Cloning and characterization of CAP, the S. cerevisia gene encoding the 70 kd adenyl cyclase-associated protein. Cell 61, 319–327 (1990).

    Article  CAS  Google Scholar 

  8. Fedor-Chaiken, M., Deschenes, R.J. & Broach, J.R. SRV2, a gene required a RAS activation of adenylate cyclase in yeast. Cell 61, 329–340 (1990).

    Article  CAS  Google Scholar 

  9. Bauer, F., Urdaci, M., Aigle, M. & Crouzet, M. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Molec. cell. Biol. 13, 5070–5084 (1993).

    Article  CAS  Google Scholar 

  10. Stott, K., Saito, K., Thiele, D.J. & Massey, V. Old yellow enzyme: The discover of multiple isozymes and a family of related proteins. J. biol. Chem. 268, 6097–6106 (1993).

    CAS  Google Scholar 

  11. Albig, W. & Entian, K. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene 73,141–152 (1988).

    Article  CAS  Google Scholar 

  12. Remacha, M., Saenz-Robles, M.T., Vilella, M.D. & Ballesta, J.P. Independent genes coding for the three acidic proteins of the large ribosomal subunit from Saccharomyces cerevisiae. J. biol. Chem. 263, 9094–9101 (1988).

    CAS  PubMed  Google Scholar 

  13. Bass, S.H., Mulkerrin, M.G., Wells, J.A. A systematic mutational analysis of hormone-binding determinants in the human growth hormone receptor. Proc. natn. Acad. Sci. U.S.A. 88, 4498–4502 (1991).

    Article  CAS  Google Scholar 

  14. Pawson, T. & Gish, G.D. SH2 and SH3 domains: from structure to function. Cell 71, 359–362 (1992).

    Article  CAS  Google Scholar 

  15. Drubin, D.G., Mulholland, J., Zhu, Z. & Botstein, D. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-l. Nature 343, 288–290 (1990).

    Article  CAS  Google Scholar 

  16. Trueheart, J., Boeke, J.D. & Fink, G.R. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Molec. cell. Biol. 7, 2316–2328 (1987).

    Article  CAS  Google Scholar 

  17. Chenevert, J., Corrado, K., Bender, A., Pringle, I. & Herskowitz, J. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).

    Article  CAS  Google Scholar 

  18. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin: DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  19. Lorenz, M., Popp, D. & Holmes, K.C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. molec. Biol. 234, 826–836 (1993).

    Article  CAS  Google Scholar 

  20. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  Google Scholar 

  21. Schutt, C.E., Myslik, J.C., Rozycki, M.D., Goonesekere, N.C.W. & Lindberg, U. The structure of crystalline profilin-b-actin. Nature 365,810–816 (1993).

    Article  CAS  Google Scholar 

  22. Vandekerckhove, J.S., Kaiser, D.A. & Pollard, I.D. Acanthamoeba actin and profilin can be cross-linked between glutamic acid 364 of actin and lysine 115 of profilin. J. Cell Biol. 109, 619–626 (1989).

    Article  CAS  Google Scholar 

  23. Chen, X., Cook, R.K., Rubenstein, A. Yeast actin with a mutation in the ‘hydrophobic pluy’ between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J. Cell Biol. 123, 1185–1195 (1993).

    Article  CAS  Google Scholar 

  24. Millonig, R., Salvo, H. & Aebi, U. Probing actin polymerization by intermolecular cross-linking. J. Cell Biol. 106, 785–796 (1988).

    Article  CAS  Google Scholar 

  25. Elzinga, M. & Phelan, J.J. F-actin is intermolecularly cross-linked by N, N′-p-phenylenedimaleimide through lysine 191 and cysteine 374. Proc. natn. Acad. Sci. U.S.A. 81, 6599–6602 (1984).

    Article  CAS  Google Scholar 

  26. Theriot, J.A. & Mitchison, T.J. The three faces of profilin. Cell 75, 835–838 (1993).

    Article  CAS  Google Scholar 

  27. Machesky, L.M. & Pollard, T.D. Profilin as a potential mediator of membrane-cytoskeleton communications. Trends Cell Biol. 3, 381–385 (1993).

    Article  CAS  Google Scholar 

  28. Yu, H. et al., Structural basis for the binding of proline-rich peptides otSH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  29. Tanaka, M. & Shibata, H. Poly(L-proline)-binding proteins from chick embryos are a profilin and a profilactin. Eur. J. Biochem. 151, 291–297 (1985).

    Article  CAS  Google Scholar 

  30. Musacchio, A., Noble, M., Pauptit Wierenga, R.R. & Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  CAS  Google Scholar 

  31. Gerst, J.E., Ferguson, K., Vojtek, A., Wigler, M. & Field, J. CAP is a bif unctional component of the Saccharomyces cerevisiae adenyl cyclase complex. Molec. cell. Biol. 11, 1248–1257 (1991).

    Article  CAS  Google Scholar 

  32. Wang, J., Suzuki, N., Nishida, Y. & Kataoka, T. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutant sof yeast adenyl cyclase defective in CAP binding. Molec. Cell. biol. 12, 4087–4097 (1993).

    Article  Google Scholar 

  33. Vojtek, A. et al. Evidence for a functional link between profilin and CAP in the yeast S.cerevisiae. Cell 66, 497–505 (1991).

    Article  CAS  Google Scholar 

  34. Gietz, R.D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

  35. Elledge, S.J., Mulligan, J.T., Ramer, S.W., Spottswood, M.R., Davis, W. IYES: A multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. natn. Acad. Sci. U.S.A. 88, 1731–1735 (1991).

    Article  CAS  Google Scholar 

  36. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amberg, D., Basart, E. & Botstein, D. Defining protein interactions with yeast actin in vivo. Nat Struct Mol Biol 2, 28–35 (1995). https://doi.org/10.1038/nsb0195-28

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0195-28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing