Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein

Abstract

The structure of the TATA-box bound to the TATA-binding protein revealed a new and unexpected deformation of the double helix leading to a sharp change in the DNA trajectory. Here we show that the deformation imposed upon the TATA-box represents a novel form of the double helix—named TA-DNA—which differs from A-DNA by a single conformational parameter, namely the rotation around the glycosidic bond. This rotation causes a 50° inclination of the base pairs in the TATA-box which in turn results in abrupt change in the trajectory of the flanking B-DNA segments. The observation that the TATA sequence can assume an A-DNA conformation coupled to the simplicity of the transition from A-DNA to TA-DNA may be the reason for the presence of the TATA sequence in a wide range of promoters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shakked, Z. et al. Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C). Proc. R. Soc. Lond. B213, 479–487 (1981).

    Google Scholar 

  2. Shakked, Z. et al. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C). J. molec. Biol. 166, 183–201 (1983).

    Article  CAS  Google Scholar 

  3. Dickerson, R.E. DNA structure from A to Z. In Methods in Enzymology, vol. 211, part A, DNA Structures (eds Lilley, D.M.J. & Dahlberg, J.E.), 67–111 (Academic Press, Inc., 1992).

    Google Scholar 

  4. Bingman, C., Jain, S., Zon, G. & Sundaralingam, M. Crystal and molecular structure of the alternating dodecamer d(GCGTACGTACGC) in the A-DNA form: comparison with the isomorphous non-alternating dodecamer d(CCGTACGTACGG). Nucleic Acids Res. 20, 6637–6647 (1992).

    Article  CAS  Google Scholar 

  5. Weston, S.A., Lahm, A. & Suck, D. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 Å resolution. J. molec. Biol. 226, 1237–1256 (1992).

    Article  CAS  Google Scholar 

  6. Lahm, A. & Suck, D. DNase I-induced DNA conformation. A structure of a DNase I-octamer complex. J. molec. Biol. 222, 645–667 (1991).

    Article  CAS  Google Scholar 

  7. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993)

    Article  CAS  Google Scholar 

  8. Kim, J.L., Nikolov, D.B. and Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  Google Scholar 

  9. Klug, A. Transcription. Opening the gateway. Nature 365, 486–487 (1993).

    Article  CAS  Google Scholar 

  10. Shakked, Z. & Rabinovich, D. The effect of the base sequence on the fine structure of the DNA double helix. Prog. Biophys. molec. Biol. 47, 159–195 (1986).

    Article  CAS  Google Scholar 

  11. Kim, J.L. & Burley, S.K. 1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nature struct. Biol. 1, 638–653 (1994).

    Article  CAS  Google Scholar 

  12. Selsing, E., Wells, R.D., Alden, C.J. & Arnott, S. Bent DNA: visualization of a base-paired and stacked A-B conformational junction. J. biol. Chem. 254, 5417–5422 (1979).

    CAS  PubMed  Google Scholar 

  13. Hegde, R.H., Grossman, S.R., Laimins, L.A. & Sigler, P.B. Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature, 359, 505–512 (1992).

    Article  CAS  Google Scholar 

  14. Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).

    Article  CAS  Google Scholar 

  15. Wu, H.-M. & Crothers, D.M. The locus of sequence-directed and protein-induced DNA binding. Nature, 308, 509–513 (1984).

    Article  CAS  Google Scholar 

  16. Crothers, D.M., Haran, T.E. and Nadeau, J.G. Intrinsically bent DNA. J. biol. Chem. 256, 7093–7096 (1990).

    Google Scholar 

  17. Travers, A.A. and Klug, A. in DNA Topology and its Biological Effects (eds Cozzarelli, N.R. & Wang, J.C.) 57–106 (Cold Spring Harbor Laboratory Press, New York, 1990)

    Google Scholar 

  18. Shakked, Z. et al. Determinants of represser/operator recognition from the structure of the trp operator binding site. Nature 368, 469–473 (1994).

    Article  CAS  Google Scholar 

  19. Shakked, Z. et al. Sequence-specific gene regulatory interactions: the role played by the structure and hydration of the DNA target. in Structural Biology: the State of the Art, vol. 1, (eds Sarma, R.H. & Sarma, M.H.) 199–216 (Adenine Press, New York, 1994).

    Google Scholar 

  20. Guzikevich-Guerstein, G., Ph. D. thesis (Submitted to the Feinberg Graduate School of the Weizmann Institute of Science, 1995).

  21. Wobbe, C.R. & Struhl., K. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Molec. cell. Biol. 10, 3859–3867 (1990).

    Article  CAS  Google Scholar 

  22. Hunter, C.A. Sequence-dependent DNA structure. The role of base- stacking interactions. J. molec. Biol. 248, 662–678 (1995).

    Article  Google Scholar 

  23. Travers, A.A. Reading the minor groove. Nature struct. Biol. 2, 615–617 (1995)

    Article  CAS  Google Scholar 

  24. Eisenstein, M. & Shakked, Z. Hydration patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. J. molec. Biol. 248, 662–678 (1995).

    Article  CAS  Google Scholar 

  25. Chandrasekaran, R. & Arnott, S. The structure of DNA and RNA helices in oriented fibers. In Landolt-Bornstein, New Series, Group VII, Vol. 1b (Saenger, W., Ed.) 31–170 (Springer-Verlag, Berlin; 1989).

    Google Scholar 

  26. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. biomol. Struct Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  27. Fratini, A.V., Kopka, M.L., Drew, H.R. & Dickerson, R.E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTbrCGCG. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  28. Dickerson, R.E. et al. Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 8, 1–4 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzikevich-Guerstein, G., Shakked, Z. A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat Struct Mol Biol 3, 32–37 (1996). https://doi.org/10.1038/nsb0196-32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0196-32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing