Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peptide-triggered conformational switch in HIV-1 RRE RNA complexes

Abstract

We have used NMR spectroscopy to determine the solution structure of a complex between an oligonucleotide derived from stem IIB of the Rev responsive element (RRE-IIB) of HIV-1 mRNA and an in vivo selected, high affinity binding Arg-rich peptide. The peptide binds in a partially α-helical conformation into a pocket within the RNA deep groove. Comparison with the structure of a complex between an α-helical Rev peptide and RRE-IIB reveals that the sequence of the bound peptide determines the local conformation of the RRE peptide binding site. A conformational switch of an unpaired uridine base was revealed; this points out into the solvent in the Rev peptide complex, but it is stabilized inside the RNA deep groove by stacking with an Arg side chain in the selected peptide complex. The conformational switch has been visualized by NMR chemical shift mapping of the uridine H5/H6 atoms during a competition experiment in which Rev peptide was displaced from RRE-IIB by the higher affinity binding selected peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RSG-1.2–RRE-IIB complex.
Figure 2: The peptide binding sites in the RRE-IIB complexes.
Figure 3: Intermolecular contacts in the RSG-1.2–RRE-IIB complex.
Figure 4: Conformational transitions of U72.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. De Guzman, R.N., Turner, R.B. & Summers, M.F. Biopolymers: Nucleic Acid Sciences 48, 181–195 (1998).

    Article  CAS  Google Scholar 

  2. Patel, D.J. Curr. Opin. Struct. Biol. 9, 74–87 (1999).

    Article  CAS  Google Scholar 

  3. Frankel, A.D. Curr. Opin. Struct. Biol. 10, 332–340 (2000).

    Article  CAS  Google Scholar 

  4. Hermann, T. & Patel, D.J. Science 287, 820–825 (2000).

    Article  CAS  Google Scholar 

  5. Tan, R., Chen, L., Buettner, J.A., Hudson, D. & Frankel, A.D. Cell 73, 1031–1040 (1993).

    Article  CAS  Google Scholar 

  6. Battiste, J.L., et al. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  7. Ye, X., Gorin, A., Ellington, A.D. & Patel, D.J. Nature Struct. Biol. 3, 1026–1033 (1996).

    Article  CAS  Google Scholar 

  8. Ye, X. et al. Chem. Biol. 6, 657–669 (1999).

    Article  CAS  Google Scholar 

  9. Harada, K., Martin, S.S. & Frankel, A.D. Nature 380, 175–179 (1996).

    Article  CAS  Google Scholar 

  10. Harada, K., Martin, S.S., Tan, R. & Frankel, A.D. Proc. Natl. Acad. Sci. USA 94, 11887–11892 (1997).

    Article  CAS  Google Scholar 

  11. Battiste, J.L., Tan, R., Frankel, A.D. & Williamson, J.R. Biochemistry 33, 2741–2747 (1994).

    Article  CAS  Google Scholar 

  12. Peterson, R.D. & Feigon, J. J. Mol. Biol. 264, 863–877 (1996).

    Article  CAS  Google Scholar 

  13. Hung, L.-W., Holbrook, E.L. & Holbrook, S.R. Proc. Natl. Acad. Sci. USA 97, 5107–5112 (2000).

    Article  CAS  Google Scholar 

  14. Spera, S. & Bax, A. J. Am. Chem. Soc . 117, 5491–5495 (1991).

    Google Scholar 

  15. Kuboniwa, H., Grezesiek, S., Delaglio, F. & Bax, A. J. Biomol. NMR 4, 871–878 (1994).

    Article  CAS  Google Scholar 

  16. Farrow, N.A. et al. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  17. Dingley, A.J. & Grezesiek, S. J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  18. Molinaro, M. & Tinoco, I. Nucleic Acids Res. 23, 3056–3063 (1995).

    Article  CAS  Google Scholar 

  19. Calnan, B.J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A.D. Science 252, 1167–1171 (1991).

    Article  CAS  Google Scholar 

  20. Hermann, T. & Westhof, E. Chem. Biol. 6, R335–R343 (1999).

    Article  CAS  Google Scholar 

  21. Hermann, T. Angew. Chem. Int. Ed. 39, 1890–1905 (2000).

    Article  CAS  Google Scholar 

  22. Le., S.-Y., Malim, M.H., Cullen, B.R. & Maizel, J.V. Nucleic Acids. Res. 18, 1613–1623 (1990).

    Article  CAS  Google Scholar 

  23. Iwai, S., Pritchard, C., Mann, D.M., Karn, J. & Gait, M.J. Nucleic Acids Res. 20, 6465–6472 (1992).

    Article  CAS  Google Scholar 

  24. Pritchard, C.E. et al. Nucleic Acids Res. 22, 2592–2600 (1994).

    Article  CAS  Google Scholar 

  25. Cai, Z. et al. Nature Struct. Biol. 5, 203–212 (1998).

    Article  CAS  Google Scholar 

  26. Delaglio, F. et al. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  27. Johnson, B.A. & Blevins, R.A. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  28. Nikonowicz, E.P. & Pardi, A. J. Mol. Biol . 232, 1141–1156 (1993).

    Article  CAS  Google Scholar 

  29. Hu, W. et al. J. Biomol. NMR 12, 559–564 (1998)

    Article  CAS  Google Scholar 

  30. Fiala, R., Jiang, F. & Sklenar, V. J. Biomol. NMR 12, 373–383 (1998).

    Article  CAS  Google Scholar 

  31. Muhandiram, D.R. & Kay, L.E. J. Magn. Reson. B 103, 203–216 (1994).

    Article  CAS  Google Scholar 

  32. Zwahlen, C. et al. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  33. Pearlman, D.A. et al. AMBER 4.1 (San Francisco, California; 1994).

    Google Scholar 

Download references

Acknowledgements

This research was supported by a NIH grant to D.J.P. X.Ye was involved in the early stages of this project and S. Park provided technical assistance in the preparation of the labeled peptide.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Hermann or Dinshaw J. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosser, Y., Hermann, T., Majumdar, A. et al. Peptide-triggered conformational switch in HIV-1 RRE RNA complexes. Nat Struct Mol Biol 8, 146–150 (2001). https://doi.org/10.1038/84138

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/84138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing