Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for a double-helical structure for modular polyketide synthases

Abstract

Modular polyketide synthases are multienzymes responsible for the biosynthesis of a large number of clinically important natural products. They contain multiple sets, or modules, of enzymatic activities, distributed between a few giant multienzymes and there is one module for every successive cycle of polyketide chain extension. We show here that each multi-enzyme in a typical modular polyketide synthase forms a (possibly helical) parallel dimer, and that each pair of identical modules interacts closely across the dimer interface. Such an arrangement would allow identical modules to share active sites for chain extension, and thus to function independently of flanking modules, which would have important implications both for mechanisms of evolution of polyketide synthases and for their future genetic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cortés, J., Haydock, S.F., Roberts, G.A., Bevitt, D.J. & Leadlay, P.F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348, 176–178 (1990).

    Article  Google Scholar 

  2. Donadio, S., Staver, M.J., McAlpine, J.B., Swanson, S.J. & Kartz, L. Modular organization of genes required for complex polyketide formation. Science 252, 675–679 (1991).

    Article  CAS  Google Scholar 

  3. MacNeil, D.J. et al. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119–125 (1992).

    Article  CAS  Google Scholar 

  4. Swan, D.G., Rodríguez, A.M., Vilches, C., Méndez, C. & Salas, J.A. Characterization of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence. Mol. Gen. Genet. 242, 358–362 (1994).

    Article  CAS  Google Scholar 

  5. Schwecke, T. et al. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92, 7839–7843 (1995)

    Article  CAS  Google Scholar 

  6. Hu, Z.H. et al. Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp. FR-008. Mol. Microbiol. 14, 163–172 (1994).

    Article  CAS  Google Scholar 

  7. Hopwood, D.A. & Sherman, D.H. Molecular genetics of polyketide synthesis and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24, 37–66 (1990).

    Article  CAS  Google Scholar 

  8. Staunton, J. The extraordinary enzymes involved in erythromycin biosynthesis. Ang. Chem. Int. Ed. Engl. 30, 1302–1306 (1991).

    Article  Google Scholar 

  9. Katz, L. & Donadio, S. Polyketide synthesis - prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47, 875–912 (1993).

    Article  CAS  Google Scholar 

  10. Hutchinson, C.R. & Fujii, I. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49, 201–238 (1995).

    Article  CAS  Google Scholar 

  11. Bevitt, D.J., Cortés, J., Haydock, S.F. & Leadlay, P.F. 6-deoxyerythronolide B synthase-2 from Saccharopolyspora erythraea -cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur. J. Biochem. 204, 39–49 (1992).

    Article  CAS  Google Scholar 

  12. Wakil, S.J. Fatty acid synthase - a proficient multifunctional enzyme. Biochemistry 28, 4523–4530 (1989).

    Article  CAS  Google Scholar 

  13. Joshi, A.K. & Smith, S. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem. 268, 22508–22513 (1995).

    Google Scholar 

  14. Caffrey, P., Bevitt, D.J., Staunton, J. & Leadlay, P.F. Identification of DEBS-1, DEBS-2 and DEBS-3, the multienzyme polypeptides of the erythromycin-producing polyketide synthase from Saccharopolyspora erythraea. FEBS Letters 304, 225–228 (1992).

    Article  CAS  Google Scholar 

  15. Kao, C.M., Luo, G.L., Katz, L., Cane, D.E. & Khosla, C. Engineered biosynthesis of a triketide lactone from an incomplete modular polyketide synthase. J. Amer. Chem. Soc. 116, 11612–11613 (1994).

    Article  CAS  Google Scholar 

  16. Brown, M.J.B., Cortés, J., Cutter, A.L., Leadlay, P.F. & Staunton, J.A. mutant generated by expression of an engineered DEBS1 protein from the erythromycin-producing polyketide synthase (PKS) in Streptomyces coelicolor produces the triketide as a lactone but the major product is the nor-analogue derived from acetate as starter acid. J. C. S. Chem. Commun. 1517–1518 (1995).

  17. Cortés, J., Wiesmann, K.E.H., Roberts, G.A., Brown, M.J.B., Staunton, J. & Leadlay, P.F. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268, 1487–1489 (1995).

    Article  Google Scholar 

  18. Wiesmann, K.E.H., Cortés, J., Brown, M.J.B., Cutter, A.L., Staunton, J. & Leadlay, P.F. Polyketide synthesis in vitro on a modular polyketide synthase. Chemistry & Biology 2, 583–589 (1995).

    Article  CAS  Google Scholar 

  19. Pieper, R., Luo, G.L., Cane, D.E. and Khosla, C. Cell-free synthesis of polyketides by recombinant polyketide synthases. Nature 378, 263–266 (1995)

    Article  CAS  Google Scholar 

  20. Aparicio, J.F., Caffrey, P., Marsden, A.F.A., Staunton, J. & Leadlay, P.F. Limited proteolysis and active site studies of the first multienzyme component of the erythromycin-producing polyketide synthase. J. Biol. Chem. 269, 8524–8528 (1994).

    CAS  PubMed  Google Scholar 

  21. Roberts, G.A., Staunton, J. & Leadlay, P.F. Heterologous expression in Escherichia coli of an intact multienzyme component of the erythromycin-producing polyketide synthase. Eur. J. Biochem. 214, 305–311 (1994).

    Article  Google Scholar 

  22. Marsden, A.F.A., Caffrey, P., Aparicio, J.F., Loughran, M.S., Staunton, J. & Leadlay, P.F. Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263, 378–380 (1994).

    Article  CAS  Google Scholar 

  23. Aggarwal, R., Caffrey, P., Leadlay, P.F., Smith, C.J. & Staunton, J. The thioesterase of the erythromycin-producing polyketide synthase -mechanistic studies in vitro to investigate its mode of action and substrate specificity. J. C. S. Chem. Commun. 1519–1520 (1995).

  24. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  25. Durchschlag, H. In: Thermodynamic Data for Biochemistry and Biotechnology (ed. Hinz, H.-J.) 45–128. (Springer Verlag, Berlin, 1986).

    Book  Google Scholar 

  26. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S.E., Rowe, A.J. & Norton, J.C.) 90–125. Royal Society of Chemistry, Cambridge.

  27. Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–10038 (1987).

    CAS  Google Scholar 

  28. Donadio, S. & Katz, L. Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin biosynthesis. Gene 111, 51–60 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staunton, J., Caffrey, P., Aparicio, J. et al. Evidence for a double-helical structure for modular polyketide synthases. Nat Struct Mol Biol 3, 188–192 (1996). https://doi.org/10.1038/nsb0296-188

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0296-188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing