Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A domain-swapped RNase A dimer with implications for amyloid formation

Abstract

Bovine pancreatic ribonuclease (RNase A) forms two types of dimers (a major and a minor component) upon concentration in mild acid. These two dimers exhibit different biophysical and biochemical properties. Earlier we reported that the minor dimer forms by swapping its N-terminal α-helix with that of an identical molecule. Here we find that the major dimer forms by swapping its C-terminal β-strand, thus revealing the first example of three-dimensional (3D) domain swapping taking place in different parts of the same protein. This feature permits RNase A to form tightly bonded higher oligomers. The hinge loop of the major dimer, connecting the swapped β-strand to the protein core, resembles a short segment of the polar zipper proposed by Perutz and suggests a model for aggregate formation by 3D domain swapping with a polar zipper.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagrams of the structures of RNase A.
Figure 2: Stereo view of the 2Fo - Fc electron density map of the inhibitor of RNase A, dCpdG, contoured at 1.4 σ to illustrate its detail.
Figure 3: Structure of the hinge loops of the RNase A major dimer with implications for amyloid fiber formation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bennett, M. J., Choe, S. & Eisenberg, D. S. Proc. Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  Google Scholar 

  2. Crestfield, A. M., Stein, W. H. & Moore, S. Arch. Biochem. Biophys. Suppl. 1, 217–222 (1962).

  3. Liu, Y., Hart, P. J., Schlunegger, M. P. & Eisenberg, D. S. Proc. Natl. Acad. Sci. USA 95, 3437–3442 (1998).

    Article  CAS  Google Scholar 

  4. Fruchter, R. C. & Crestfield, A. M. J. Biol. Chem. 240, 3868–3874 (1965).

    CAS  PubMed  Google Scholar 

  5. Gotte, G., Bertoldi, M. & Libonati, M. Eur. J. Biochem. 265, 680–687 (1999).

    Article  CAS  Google Scholar 

  6. Libonati, M., Bertoldi, M. & Sorrentino, S. Biochem. J. 318, 287–290 (1996).

    Article  CAS  Google Scholar 

  7. Lisgarten, J. N., Maes, D., Wyns, L., Aguilar, C. F. & Palmer, R. A. Acta Crystallogr. D 51, 767–771 (1995).

    Article  Google Scholar 

  8. Schreier, A. A. & Baldwin, R. L. J. Mol. Biol. 105, 409–426 (1976).

    Article  CAS  Google Scholar 

  9. Haber, E. & Anfinsen, C. B. J. Biol. Chem. 236, 422–426 (1961).

    CAS  PubMed  Google Scholar 

  10. Kato, I. & Anfinsen, C. B. J. Biol. Chem. 244, 1004–1007 (1969).

    CAS  PubMed  Google Scholar 

  11. Bennett, M. J., Schlunegger, M. P. & Eisenberg, D. S. Protein Sci. 4, 2455–2468 (1995).

    Article  CAS  Google Scholar 

  12. Klafki H. W. et al. Biol. Chem. Hoppe-Seyler 374, 1117–1122 (1993).

    Article  CAS  Google Scholar 

  13. Cohen, F. E. & Prusiner, S. B. Annu. Rev. Biochem. 67, 793–819 (1998).

    Article  CAS  Google Scholar 

  14. Schlunegger, M. P., Bennett, M. J. & Eisenberg, D. S. In Advances in protein chemistry (eds Richards, F. M. Eisenberg, D. S. & Kim P. S.) 50, 61–122 (Academic Press, New York; 1997).

    Google Scholar 

  15. Chiti F. et al. EMBO J. 19, 1441–1449 (2000).

    Article  CAS  Google Scholar 

  16. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  17. Perutz, M. F. Trends Biochem. Sci. 24, 58–63 (1999).

    Article  CAS  Google Scholar 

  18. Scherzinger E. et al. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  19. Maddelein, M. L. & Wickner, R. B. Mol. Cell. Biol. 19, 4516–4524 (1999).

    Article  CAS  Google Scholar 

  20. Fink, A. L. Folding & Design 3, R9–R23 (1998).

    Article  CAS  Google Scholar 

  21. Sipe, J. D. Crit. Rev. Clin. Lab. Sci. 31, 325–354 (1994).

    Article  CAS  Google Scholar 

  22. Bunn, C. W. Chemical crystallography. 278–280 (The Clarendon Press, Oxford, UK; 1952).

    Google Scholar 

  23. Glover, J. R. et al. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  24. Satyal, S. H. et al. Proc. Natl. Acad. Sci. USA 97, 5750–5755 (2000).

    Article  CAS  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Birdsall, D. L. & McPherson, A. J. Biol. Chem. 267, 22230–22236 (1992).

    CAS  PubMed  Google Scholar 

  27. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Brunger A. T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  30. Evans, S. E. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cascio, O. Dym, D. Anderson and M. Sawaya for technical advice, I. Xenario, M. J. Bennett and G. Kleiger for useful discussion, and A. McPherson for generously providing coordinates of RNase A and d(pA)4 complex. This work was supported by NSF, NIH, DOE, and Italian MURST-Prin 1999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Gotte, G., Libonati, M. et al. A domain-swapped RNase A dimer with implications for amyloid formation. Nat Struct Mol Biol 8, 211–214 (2001). https://doi.org/10.1038/84941

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/84941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing