Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

How a rotavirus hijacks the human protein synthesis machinery

The NSP3 protein from rotaviruses recognizes a unique sequence at the 3′ end of the rotaviral mRNA. By doing so, it promotes translation of viral proteins while repressing host protein synthesis. The structure of the NSP3 protein bound to a viral 3′ end sequence reveals how this occurs and suggests how it might be possible to design a new class of antiviral drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 5′ and 3′ ends of viral and eukaryotic mRNA synergistically stimulate initiation of protein synthesis.
Figure 2: NSP3 homodimer binds the viral mRNA 3′ ends and buries these nucleotides within a deep tunnel.

Accession codes

Accessions

Protein Data Bank

References

  1. Glass, R.I., Bresee, J.S., Parashar, U., Miller, M. & Gentsch, J.R. Nature Med. 3, 1324–1325 (1997).

    Article  CAS  Google Scholar 

  2. Patton, J.T. & Spencer, E. Virology 277, 217–225 (2000).

    Article  CAS  Google Scholar 

  3. Piron, M., Vende, P., Cohen, J. & Poncet, D. EMBO J. 17, 5811–5821 (1998).

    Article  CAS  Google Scholar 

  4. Deo, R.C., Groft, C.M., Rajashankar, K.R. & Burley, S.K. Cell 108, 71–81 (2002).

    Article  CAS  Google Scholar 

  5. Preiss, T. & Hentze, M.W. Nature 392, 516–520 (1998).

    Article  CAS  Google Scholar 

  6. Tarun, S.Z. Jr & Sachs, A.B. EMBO J. 15, 7168–7177 (1996).

    Article  CAS  Google Scholar 

  7. Hentze, M.W. Science 275, 500–501 (1997).

    Article  CAS  Google Scholar 

  8. Jackson, R.J., Howell, M.T. & Kaminski, A. Trends Biochem. Sci. 15, 477–483 (1990).

    Article  Google Scholar 

  9. Spahn, C.M. et al. Science 291, 1959–1962 (2001).

    Article  CAS  Google Scholar 

  10. Michel, Y.M., Poncet, D., Piron, M., Kean, K.M. & Borman, A.M. J. Biol. Chem. 275, 32268–32276 (2000).

    Article  CAS  Google Scholar 

  11. Vende, P., Piron, M., Castagne, N. & Poncet, D. J. Virol. 74, 7064–7071 (2000).

    Article  CAS  Google Scholar 

  12. Varani, G. & Nagai, K. Annu. Rev. Biophys. Biomol. Struct. 27, 407–445 (1998).

    Article  CAS  Google Scholar 

  13. Spolar, R.S. & Record, M.T. Jr Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  14. Allain, F.H. et al. Nature 380, 646–650 (1996).

    Article  CAS  Google Scholar 

  15. Battiste, J.L. et al. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  16. Williamson, J.R. Nature Struct. Biol. 7, 834–837 (2000).

    Article  CAS  Google Scholar 

  17. Wells, S.E., Hillner, P.E., Vale, R.D. & Sachs, A.B. Mol. Cell 2, 135–140 (1998).

    Article  CAS  Google Scholar 

  18. Poncet, D. Laurent, S. & Cohen, J. EMBO J. 13, 4165–4173 (1994).

    Article  CAS  Google Scholar 

  19. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cell 89, 951–961 (1997).

    Article  CAS  Google Scholar 

  20. Matsuo, H. et al. Nature Struct. Biol. 4, 717–724 (1997).

    Article  CAS  Google Scholar 

  21. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Cell 98, 835–845 (1999).

    Article  CAS  Google Scholar 

  22. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Mol. Cell 3, 707–716 (1999).

    Article  CAS  Google Scholar 

  23. Deo, R.C., Sonenberg, N. & Burley, S.K. Proc. Natl. Acad. Sci. USA 98, 4414–4419 (2001).

    Article  CAS  Google Scholar 

  24. Kozlov, G. et al. Proc. Natl. Acad. Sci. USA 98, 4409–4413 (2001).

    Article  CAS  Google Scholar 

  25. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55. (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Varani or Frédéric H.-T. Allain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varani, G., Allain, FT. How a rotavirus hijacks the human protein synthesis machinery. Nat Struct Mol Biol 9, 158–160 (2002). https://doi.org/10.1038/nsb0302-158

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0302-158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing