Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot

Abstract

Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 Å crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson–Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beet western yellow virus (BWYV) pseudoknot electron density maps at 1.9 Å resolution contoured at 1.0σ above the mean.
Figure 2: The beet western yellow virus (BWYV) pseudoknot crystal structure and secondary sequence.
Figure 3: RNA triplex interactions of loop 2 in the minor groove of stem 1.
Figure 5: Stereo view of stabilizing interactions at sharp turns, ions and water molecules.
Figure 4: Quadruple-base interactions of loop 1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gesteland, R.F. & Atkins, J.F. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65 , 741–768 (1996).

    Article  CAS  Google Scholar 

  2. Farabaugh, P.J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacks, T., Madhani, H.D., Masiarz, F.R. & Varmus, H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447–458 (1988).

    Article  CAS  Google Scholar 

  4. Chamorro, M., Parkin, N. & Varmus, H.E. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89, 713–717 (1992).

    Article  CAS  Google Scholar 

  5. ten Dam, E., Brierley, I., Inglis, S. & Pleij, C. Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucleic Acids Res. 22 , 2304–2310 (1994).

    Article  CAS  Google Scholar 

  6. Brierley, I., Rolley, N.J., Jenner, A.J. & Inglis, S.C. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 220, 889–902 (1991).

    Article  CAS  Google Scholar 

  7. Tzeng T.-H., Tu, C.-L. & Bruenn J.A. Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus. J. Virol. 66, 999–1006 ( 1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, W.A., Dinesh-Kumar, S.P. & Paul, C.P. Luteovirus gene expression. Crit. Rev. Plant Sci. 14, 179–211 ( 1995).

    Article  CAS  Google Scholar 

  9. Somogyi, P., Jenner, A.J., Brierley, I. & Inglis, S.C. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell. Biol. 13, 6931–6940 (1993).

    Article  CAS  Google Scholar 

  10. Pleij, C.W.A., Rietveld, K. & Bosch, L. A new principle of RNA folding on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985).

    Article  CAS  Google Scholar 

  11. Chen, X. et al. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 14, 842–852 ( 1995).

    Article  CAS  Google Scholar 

  12. ten Dam, E.B., Verlaan, P.W.G. & Pleij, C.W.A. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. RNA 1, 146 –154 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Puglisi, J.D., Wyatt, J.R. & Tinoco, I. Jr. Conformation of an RNA pseudoknot. J. Mol. Biol. 214, 437– 453 (1990).

    Article  CAS  Google Scholar 

  14. Shen, L.X. & Tinoco, I. Jr. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J. Mol. Biol. 247, 963– 978 (1995).

    Article  CAS  Google Scholar 

  15. Du, Z., Giedroc, D.P. & Hoffman, D.W. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophage T2 and T6: a model for a possible family of structurally related pseudoknots. Biochemistry 35, 4187–4198 (1996).

    Article  CAS  Google Scholar 

  16. Du, Z., Holland, J.A., Hansen, M.R., Giedroc, D.P. & Hoffman, D.W. Basepairings within the RNA pseudoknot associated with simian retrovirus-1 gag-pro frameshift site. J. Mol. Biol. 270, 464–470 (1997).

    Article  CAS  Google Scholar 

  17. Kang, H. & Tinoco, I. Jr. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus. Nucleic Acids Res. 25, 1943–1949 (1997).

    Article  CAS  Google Scholar 

  18. Kolk, M.H. et al. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280, 434 –438 (1998).

    Article  CAS  Google Scholar 

  19. Saenger, W. Principles of nucleic acid structure. (Springer-Verlag, New York; 1984).

    Book  Google Scholar 

  20. Felsenfeld, G., Davies, D.R. & Rich, A. Formation of a three-stranded polynucleotide molecule. J. Amer. Chem. Soc. 79, 2023– 2024 (1957).

    Article  CAS  Google Scholar 

  21. Rajagopal, P. & Feigon, J. Triple-strand formation in the homopurine : homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4 . Nature 339, 637– 640 (1989).

    Article  CAS  Google Scholar 

  22. Egli, M. & Gessner, R.V. Stereoelectronic effects of deoxyribose O4' on DNA conformation. Proc. Natl. Acad. Sci. USA 92, 180–184 (1995).

    Article  CAS  Google Scholar 

  23. Pley, H.W., Flaherty, K.M. & McKay, D.B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113 ( 1994).

    Article  CAS  Google Scholar 

  24. Cate, J. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678– 1685 (1996).

    Article  CAS  Google Scholar 

  25. Brown, T. & Hunter, W.N. Non-Watson–Crick base associations in DNA and RNA revealed by single crystal x-ray diffraction methods: mismatches, modified bases, and nonduplex DNA. Biopoly. 44, 91–103 (1997).

    Article  CAS  Google Scholar 

  26. Pley, H.W., Flaherty, K.M. & McKay D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    Article  CAS  Google Scholar 

  27. Scott, W.G., Finch, J.T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for catalytic cleavage. Cell 81 , 991–1002 (1995).

    Article  CAS  Google Scholar 

  28. Quigley, G.J. & Rich, A. Structural domains of transfer RNA molecules. Science 194, 796– 806 (1976).

    Article  CAS  Google Scholar 

  29. Portmann, S., Grimm, S., Workman, C., Usman, N. & Egli, M. Crystal structures of an A-form duplex with single-adenosine bulges and conformational basis for site specific RNA self-cleavage. Chem. Biol. 3, 173–184 (1996).

    Article  CAS  Google Scholar 

  30. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. Hhal methyltransferase flips its target base out of the DNA helix. Cell 76 , 357–369 (1994).

    Article  CAS  Google Scholar 

  31. Hartman, K.A. & Rich, A. The tautomeric form of helical polyribocytidylic acids. J. Am. Chem. Soc. 87, 2033– 2039 (1965).

    Article  CAS  Google Scholar 

  32. Gehring, K., Leroy, J.-L., Guéron, M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363, 561– 565 (1993).

    Article  CAS  Google Scholar 

  33. Chen, L., Cai, L., Zhang, X. & Rich, A. Crystal structure of a four-stranded intercalated DNA: d(C4). Biochemistry 33, 13540–13546 (1994).

    Article  CAS  Google Scholar 

  34. Wyatt, J.R., Puglisi, J.D. & Tinoco, I. Jr. RNA pseudoknots. Stability and loop size requirements. J. Mol. Biol. 214, 455 –470 (1990).

    Article  CAS  Google Scholar 

  35. Gluick, T.C., Wills, N.M., Gesteland, R.F. & Draper, D.E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry 36, 16173–16186 (1997).

    Article  CAS  Google Scholar 

  36. Tu, C., Tzeng, T.-H. & Bruenn, J.A. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc. Natl. Acad. Sci. USA 89, 8636–8640 (1992).

    Article  CAS  Google Scholar 

  37. Sung, D. & Kang, H. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1. Nucleic Acids Res. 26, 1369–1372 (1998).

    Article  CAS  Google Scholar 

  38. Jaeger, J., Restle T. & Steitz, T.A. The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J. 17, 4535–4542 (1998).

    Article  CAS  Google Scholar 

  39. Pleij, C.W.A. RNA Pseudoknots. Curr. Opin. Struct. Biol. 4, 337–344 (1994).

    Article  CAS  Google Scholar 

  40. Ortoleva-Donnelly, L., Szewczak, A.A., Gutell, R.R. & Strobel S.A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498– 519 (1998).

    Article  CAS  Google Scholar 

  41. Dinman, J.D., Ruiz-Echevarria, M.J. & Peltz, S.W. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends. Biotechnol. 16, 190–196 ( 1998).

    Article  CAS  Google Scholar 

  42. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol . 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  44. CCP4. Collaborative computing project number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  45. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 ( 1997).

    Article  CAS  Google Scholar 

  46. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).

    Article  Google Scholar 

  47. Brünger, A.T. X-PLOR Version 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven; 1992).

    Google Scholar 

  48. Pann, N.S. & Read, R.J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A 52, 659–668 (1996).

    Article  Google Scholar 

  49. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958 –961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. de La Fortelle for extensive help on the program SHARP; G. Minasov and I. Berger for help in data processing and refinement, Y.-G. Kim for frameshifting discussions; C. Ogata (X4A-NSLS), M. Soltis (SSRL) and the staff at CHESS F2 for synchrotron assistance. We acknowledge help from T. Schwartz, D. Chan, M. Schade and K.-J. Wu on data collection; V. Tereshko, A. and H. Szoke for technical assistance; J. Cate, D. Bartel, M. Rould, U. RajBhandary, A. Herbert and B. Brown for helpful discussions. We are indebted to H. Taube and S. Holbrook for providing us with the osmium hexammine triflate compound; J. McCloskey and P. Crain for bromine mass spectroscopy analysis. We also thank L. Gerhke, K. Lowenhaupt and F. Houser-Scott for assistance in the T7 transcription system; D. Lauffenburger and S. Zhang at the MIT Center of Biomedical Engineering for providing the computer facility. This research was supported by grants from the National Science Foundation, the National Institutes of Health, the National Foundation for Cancer Research and the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L., Chen, L., Egli, M. et al. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Mol Biol 6, 285–292 (1999). https://doi.org/10.1038/6722

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/6722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing