Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the molecular trigger for allosteric activation in glycogen phosphorylase

Abstract

Activation of protein function through phosphorylation can be mimicked by the engineering of specific metal binding sites. The addition of two histidine residues to glycogen phosphorylase allows enzymatic activation by transition metals in a cooperative and allosteric manner. Crystal structures of the metallo-enzyme have been determined and show that the structural transition induced upon metal binding (Ni2+) is, in part, analogous to the mode of activation of the native enzyme. The designed metal activation site allows assignment of the structural changes which trigger activation in this allosteric enzyme and, further, provide insight into the evolutionary development of multiple activation sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nishizuka, Y. Signal transduction crosstalk. Trends biochem. Sci. 17, 367 (1992).

    Article  Google Scholar 

  2. Cohen, P. The structure and regulation of protein phosphatases. A. Rev. Biochem. 58, 453–508 (1989).

    Article  CAS  Google Scholar 

  3. Hers, H.G. Mechanisms of blood glucose homeostasis. J. inherit. metab. Dis. 13, 395–410 (1990).

    Article  CAS  Google Scholar 

  4. Johnson, L.N. Glycogen phosphorylase; control by phosphorylation and allosteric effectors. FASEB J. 6, 2274–2282 (1992).

    Article  CAS  Google Scholar 

  5. Browner, M.F. & Fletterick, R.J. Phosphorylase: a biological transducer. Trends biochem. Sci. 17, 66–71 (1992).

    Article  CAS  Google Scholar 

  6. Barford, D., Hu, S.-H. & Johnson, L.N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMR. J. molec. Biol. 218, 233–260 (1991).

    Article  CAS  Google Scholar 

  7. Goldsmith, E.J., Sprang, S.R., Hamlin, R., Xuong, N.-H. & Fletterick, R.J. Domain separation in the activation of glycogen phosphorylase a. Science 245, 528–532 (1989).

    Article  CAS  Google Scholar 

  8. Sprang, S., Goldsmith, E. & Fletterick, R. Structure of the nucleotide activation switch in glycogen phosphorylase a. Science 237, 1012–1019 (1987).

    Article  CAS  Google Scholar 

  9. Sprang, S.R. et al. Structural changes in glycogen phosphorylase induced by phsophorylation. Nature 336, 215–221 (1988).

    Article  CAS  Google Scholar 

  10. Sprang, S.R., Withers, S.G., Goldsmith, E.J., Fletterick, R.J. & Madsen, N.B. The structrual basis the activation of glycogen phosphorylase b by adenosine monophosphate. Science 254, 1367–1371 (1991).

    Article  CAS  Google Scholar 

  11. Browner, M.F., Hwang, P.K. & Fletterick, R.J. Cooperative binding is not required for activation of muscle phosphorylase. Biochemistry 31, 11291–11296(1992).

    Article  CAS  Google Scholar 

  12. Glusker, J.P. Structural aspects of metal ligandingto functional groups in proteins Adv. prot. Chem. 42 1–76 (1991)

    CAS  Google Scholar 

  13. McGrath, M.E., Haymore, B.L., Summers, N.L., Craik, C.S. & Fletterick, R.J. Structure of an engineered metal-activated switch in trypsin. Biochemistry 32, 1914–1919 (1993).

    Article  CAS  Google Scholar 

  14. Higaki, J.N., Haymore, B.L., Chen, S., Fletterick, R.J. & Craik, C.S. Regulation of serine protease activity by an engineered metal switch. Biochemistry 29, 8582–8586(1990).

    Article  CAS  Google Scholar 

  15. Arnold, F.H. & Haymore, B.L. Engineered metal-binding proteins: purification to protein folding. Science 252, 1796–1797 (1991).

    Article  CAS  Google Scholar 

  16. Iverson, B.L. et al. Metalloantibodies. Science 249, 659–662 (1990).

    Article  CAS  Google Scholar 

  17. Roberts, V.A. et al. Antibody remodeling: A general solution to the design of a metal-coordination site in an antibody binding pocket. Proc. natn. Acad. Sci. U.S.A. 87, 6654–6658 (1990).

    Article  CAS  Google Scholar 

  18. Cuenoud, B. & Schepartz, A. Altered specificity of DNA-binding protein with transtion metal dimerization domains. Science 259, 510–513 (1993).

    Article  CAS  Google Scholar 

  19. Handel, T.M., Williams, S.A. & DeGrado, W.F. Metal ion-dependent modulation of the dynamics of a designed protein. Science 261, 879–885(1993).

    Article  CAS  Google Scholar 

  20. Sprang, S., Goldsmith, E. & Fletterick, R. The crystal structure of glucose-inhibited rabbit muscle glycogen phosphorylase a at 2.1 Å resolution. J. molec. Biol. (In the press).

  21. Baron, C., Gonzalez, J.F., Mateo, P.L. & Cortijo, M. Thermodynamic analysis of the activation of glycogen phosphorylase b over a range of temperatures. J. biol. Chem. 264, 12872–12878 (1989).

    CAS  PubMed  Google Scholar 

  22. Ralston, D.M. & O'Halloran, T.V. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. natn. Acad. Sci. U.S.A. 87, 3846–3850. (1990).

    Article  CAS  Google Scholar 

  23. Hellinga, H.W. & Richards, F.M. Construction of new ligand binding sites in proteins of known structure I. Computer-aided modelling of sites with pre-defined geometry. J. molec. Biol. 222, 763–785 (1991).

    Article  CAS  Google Scholar 

  24. Koshland, D.E., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365 (1966).

    Article  CAS  Google Scholar 

  25. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  26. Martin, J.L., Johnson, L.N. & Withers, S.G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to the T-state glycogen phosphorylase b. Biochemistry 29, 10745–10757 (1990).

    Article  CAS  Google Scholar 

  27. Barford, D. & Johnson, L.N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).

    Article  CAS  Google Scholar 

  28. Browner, M.F., Fauman, E.B. & Fletterick, R.J. Tracking conformational states in allosteric transitions of phosphorylase. Biochemistry 31, 11297–11304 (1992).

    Article  CAS  Google Scholar 

  29. Browner, M.F., Rasor, P., Tugendreich, S. & Fletterick, R.J. Temperature-sensitive production of rabbit muscle glycogen phosphorylase in Escherichia coli. Prot. Engng. 4, 351–357 (1991).

    Article  CAS  Google Scholar 

  30. Luong, C.B.H., Browner, M.F. & Fletterick, R.J. Purification of glycogen phosphorylase isozymes by metal-affinity chromatography. J. Chromat. 584, 77–84 (1992).

    Article  CAS  Google Scholar 

  31. Cori, C.F., Cori, G.T. & Green, A.A. Crystalline muscle phosphrylase III. Kinetics. J. biol. Chem. 135, 39–46 (1943).

    Google Scholar 

  32. Madsen, N.B., Avramovic-Zikic, O. Lue, P.F. & Honikel, K.O. Studies on allosteric phenomena in glycogen phosphorylase b. Molec. Cell. Biochem. 11, 35–50 (1976).

    Article  CAS  Google Scholar 

  33. Eagles, P.A.M., Iqbal, M., Johnson, L.N., Mosley, J. & Wilson, K.S. A tetragonal crystal form of phosphorylase b. J. molec. Biol. 71, 803–806 (1972).

    Article  CAS  Google Scholar 

  34. Brunger, A.T. Crystallographic R-factor refinement by molecular dyanmics. Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  35. Jones, T.A. Interactive computer graphics: FRODO. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  36. Kabsch, W. Evaluation of single crystal X-ray diffraction data from a position sensitive detector. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browner, M., Hackos, D. & Fletterick, R. Identification of the molecular trigger for allosteric activation in glycogen phosphorylase. Nat Struct Mol Biol 1, 327–333 (1994). https://doi.org/10.1038/nsb0594-327

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0594-327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing