Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex

Abstract

Steroid receptors recognize bipartite targets composed of six base-pair half-sites. There are two canonical types of half-site which differ only in their central two base pairs. The crystal structure of an estrogen receptor-like DNA-binding domain bound to the wrong type of half-site (a glucocorticoid response element) reveals an interface that resembles the specific interfaces of the glucocorticoid receptor or estrogen receptor bound to their correct response elements. The underlying stereochemical defect that weakens the non-cognate interface is a difference in the helical geometry of the incorrect DNA half-site which prevents a side-chain contact and results in a gap which is filled by at least five additional fixed water sites, imposing a potential entropic burden on the stability of the interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

    Article  CAS  Google Scholar 

  2. Beato, M. Gene regulation by steroid hormones. Cell 56, 335–344 (1989).

    Article  CAS  Google Scholar 

  3. Parker, M.G. Nuclear Hormone Receptors (Academic Press, London, 1991).

    Google Scholar 

  4. Klock, G., Strahle, U. & Schutz, G. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329, 734–736 (1987).

    Article  CAS  Google Scholar 

  5. Naar, A.M. et al. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65, 1267–1279 (1991).

    Article  CAS  Google Scholar 

  6. Umesono, K., Murakami, K.K., Thompson, C.C. & Evans, R.M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255–1266 (1991).

    Article  CAS  Google Scholar 

  7. Kumar, V. & Chambon, P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55, 145–156 (1988).

    Article  CAS  Google Scholar 

  8. Tsai, S.Y. et al. Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55, 361–369 (1988).

    Article  CAS  Google Scholar 

  9. Yu, V.C. et al. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67, 1251–1266 (1991).

    Article  CAS  Google Scholar 

  10. Zhang, X.K. et al. Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358, 587–591 (1992).

    Article  CAS  Google Scholar 

  11. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman, R.A. & Evans, R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358, 771–774 (1992).

    Article  CAS  Google Scholar 

  12. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J. & Evans, R.M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446–9 (1992).

    Article  CAS  Google Scholar 

  13. Leid, M. et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68, 377–395 (1992).

    Article  CAS  Google Scholar 

  14. Marks, M.S. et al. H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 11, 1419–1435 (1992).

    Article  CAS  Google Scholar 

  15. Luisi, B.F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  CAS  Google Scholar 

  16. Schwabe, J.W. Chapman, L., Finch, J.T. & Rhodes, D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75, 567–578 (1993).

    Article  CAS  Google Scholar 

  17. Hard, T. et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249, 157–160 (1990).

    Article  CAS  Google Scholar 

  18. Schwabe, J.W., Neuhaus, D. & Rhodes, D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348, 458–461 (1990).

    Article  CAS  Google Scholar 

  19. Baumann, H. et al. Refined solution structure of the glucocorticoid receptorDNA-bindingdomain. Biochemistry 32, 13463–13471 (1993).

    Article  CAS  Google Scholar 

  20. Green, S. & Chambon, P. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325, 75–78 (1987).

    Article  CAS  Google Scholar 

  21. Green, S., Kumar, V., Theulaz, I., Wahli, W. & Chambon, P., DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J. 7, 3037–3044 (1988).

    Article  CAS  Google Scholar 

  22. Danielsen, M., Hinck, L. & Ringold, G.M. Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 57, 1131–1138 (1989).

    Article  CAS  Google Scholar 

  23. Mader, S., Kumar, V., de Verneuil, H. & Chambon, P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 338, 271–274 (1989).

    Article  CAS  Google Scholar 

  24. Umesono, K. & Evans, R.M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1346 (1989).

    Article  CAS  Google Scholar 

  25. Zilliacus, J., Dahlman-Wright, K., Wright, A., Gustafsson, J.A. & Carlstedt-Duke, J. DNA binding specificity of mutant glucocorticoid receptor DNA-binding domains. J. biol. Chem. 266, 3101–3106 (1991).

    CAS  PubMed  Google Scholar 

  26. Alroy, I. & Freedman, L.P. DNA binding analysis of glucocorticoid receptor specificity mutants. Nucleic Acids Res. 20, 1045–1052 (1992).

    Article  CAS  Google Scholar 

  27. Lundback, T., Cairns, C., Gustafsson, J.A., Carlstedt-Duke, J. & Hard, T. Thermodynamics of the glucocorticoid receptor-DNA interaction: binding of wild-type GR DBD to different response elements. Biochemistry 32, 5074–5082 (1993).

    Article  CAS  Google Scholar 

  28. Dahlman-Wright, K., Siltala-Roos, H., Carlstedt-Duke, J. & Gustafsson, J.A. Protein-protein interactions facilitate DNA binding by the glucocorticoid receptor DNA-binding domain. J. biol. Chem. 265, 14030–14035 (1990).

    CAS  PubMed  Google Scholar 

  29. Ladbury, J.E., Wright, J.G., Sturtevant, J.M. & Sigler, P.B. A thermodynamic study of the trp repressor-operator interaction. J. molec. Biol. 238, 669–6681 (1994).

    Article  CAS  Google Scholar 

  30. Rastinejad, F., Perlmann, T., Evans, R.M. & Sigler, P.B. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature, in the press.

  31. Lundback, T., Zilliacus, J., Gustafsson, J.A., Carlstedt-Duke, J. & Hard, T. Thermodynamics of sequence-specific glucocorticoid receptor-DNA interactions. Biochemistry 33, 5955–5965 (1994).

    Article  CAS  Google Scholar 

  32. Brünger, A.T. X-PLOR, Version 3.1: A System for Crystallography and NMR (Yale University Press, New Haven; 1992).

    Google Scholar 

  33. Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. biomolec.Struct. Dynam. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gewirth, D., Sigler, P. The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. Nat Struct Mol Biol 2, 386–394 (1995). https://doi.org/10.1038/nsb0595-386

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0595-386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing