Abstract
The crystal structure of d(CCCAAT), refined at 2.0 Å resolution, shows a four stranded molecule in which two parallel duplexes intercalate with opposite polarity, using cytosine•protonated cytosine base pairs. The intercalation motif in this structure is extended by adenine•adenine base pairs. Two topologically distinct broad grooves are found in the lath-like central part of the molecule with the phosphate groups on one side bent over towards each other, stabilized by bridging water molecules. At the 3′ends, two arrangements of intermolecular A•A•T base triplets are found, involving both asymmetric and symmetric A•A base pairs joined to thymine residues by Watson-Crick and reverse Hoogsteen base pairing, respectively.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Akinrimisi, E.O., Sander, C. & Ts'o, P.O.P. Properties of helical polycytidilic acid. Biochemistry 2. 340–344 (1963).
Langridge, R. & Rich, A. Molecular structure of helical polycytidylic acid. Nature 198, 725–728 (1963).
Inman, R.B. Transitions of DNA homopolymers. J. molec. Biol. 9, 624–637 (1964).
Hartman, K.A. Jr & Rich, A., The tautomeric form of helical polyribocytidylic acid. J. Am. chem. Soc. 87, 2033–2039 (1965).
Gehring, K., Leroy, J.-L. & Guéron, M. A tetrameric DNA structure with protonated cytosine•cytosine base pairs. Nature 363, 561–565 (1993).
Kang, C.H. et al. Crystal structure of intercalated four stranded d(C3T) at 1.4 Å resolution Proc. natn. Acad. Sci. U.S.A. 91, 11636–11640 (1994).
Chen, L., Cai, L., Zhang, X. & Rich, A. Crystal structure of four stranded intercalated DNA, d(C4). Biochemistry 33, 13540–13546 (1994).
Blackburn, E.H. Structure and function of telomeres. Nature, 350, 569–573 (1991).
Kang, C.H., Zhang, X., Ratliff, R., Moyzis, R. & Rich, A. Crystal structure of four stranded Oxytricha telomeric DNA. Nature 356, 126–131 (1992).
Smith, F.W. & Feigon, J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356, 164–168 (1992).
Weisman-Shomer, P. & Fry, M. QUAD, a protein from hepacyte chromatin that binds selectively to guanine-rich quadruplex DNA. J. biol. Chem, 268, 3306–3312 (1993).
Fang, G. & Cech, T.R. The β-subunit of Oxytricha protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993).
Liu, Z., Frantz, J.D., Gilbert, W. & Tye, B.-K. Identification and characterization of a nudease activity specific for G4 tetrastranded DNA. Proc. natn. Acad. Sci. U.S.A. 90, 3157–3161 (1993).
Schierer, T. & Henderson, E. A protein from Tetrahymena thermophila that specifically binds Parallel-stranded G4-DNA. Biochemistry 33, 2240–2246 (1994).
Kang, C.H. et al. A stable loop in the crystal structure of the intercalated four stranded cytosine-rich metazoan telomere. Proc. natn. Acad. Sci. U.S.A. in the press.
Meyne, J., Ratliff, R.L. & Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. natn. Acad. Sci. U.S.A. 86, 7049–7053 (1989).
Riethman, H.C., Moyzis, R.K., Meyne, J., Burke, D.T. & Olson, M.V. Cloning human telomeric DNA fragments into Saccharomyces cerevisae using a yeast-artifical-chromosome vector. Proc. natn. Acad. Sci. U.S.A. 86, 6240–6244 (1989).
Ahmed, S., Kintanar, A. & Hinderson, E. Nature struct. Biol. 1, 83–88 (1994).
Leroy, J.-L., Guéron, M., Mergny, J.-L. & Hélène, C. Intermolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 22, 1600–1606 (1994).
Radhakrishnan, I. & Patel, J.D. DNA triplexes: solution studies, hydration sites, energetics, interactions and function. Biochemistry 33, 11405–11416 (1994).
Beal, P.A. & Derwan, P.B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363 (1991).
Radhakrishnan, I., de los Santos, C. & Patel, D.J. Nuclear magnetic resonance structural studies of AAT base triple alignements in intramolecular purine•purine •pyrimidine DNA triplexes in solution. J. molec. Biol. 234, 188–197 (1993).
Jayasena, S.D. & Johnston, B.H. Intermolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu•PuPy and Py•PuPy base triplets. Biochemistry 31, 321–327 (1992).
Kim, S.H. et al. Three-dimensional structure of yeast phenylalanine transfer RNA: Folding of the ploynucleotide chain. Science 179, 285–288 (1973).
Robertus, J.D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).
Kim, S.H. et al. The general structure of transfer RNA molecules. Proc. natn. Acad. Sci. U.S.A. 71, 4970–4974 (1974).
Klug, A., Ladner, J. & Robertus, D. The structural geometry of co-ordinated base change in transfer RNA. J. molec. Biol. 89, 511–516 (1974).
Marsh, R.E., Bierstedt, R. & Eichhorn, E.L. The crystal structure of cytosine-5-aceticacid. Acta Crystallogr. 15, 310–316 (1960).
Brünger, A.T. X-PLOR A system for crystallography and NMR (Version 3.0). (Yale University, New Haven, CT 06511; 1992).
Brünger, A.T. Free R value: a novel statistical quantity for adressing the accuracy of crystal structures. Nature 355, 472–474 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Berger, I., Kang, C., Fredian, A. et al. Extension of the four-stranded intercalated cytosine motif by adenine•adenine base pairing in the crystal structure of d(CCCAAT). Nat Struct Mol Biol 2, 416–425 (1995). https://doi.org/10.1038/nsb0595-416
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/nsb0595-416
This article is cited by
-
Formation and Dissociation of the Interstrand i-Motif by the Sequences d(XnC4Ym) Monitored with Electrospray Ionization Mass Spectrometry
Journal of the American Society for Mass Spectrometry (2015)