Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extension of the four-stranded intercalated cytosine motif by adenine•adenine base pairing in the crystal structure of d(CCCAAT)

Abstract

The crystal structure of d(CCCAAT), refined at 2.0 Å resolution, shows a four stranded molecule in which two parallel duplexes intercalate with opposite polarity, using cytosine•protonated cytosine base pairs. The intercalation motif in this structure is extended by adenine•adenine base pairs. Two topologically distinct broad grooves are found in the lath-like central part of the molecule with the phosphate groups on one side bent over towards each other, stabilized by bridging water molecules. At the 3′ends, two arrangements of intermolecular A•A•T base triplets are found, involving both asymmetric and symmetric A•A base pairs joined to thymine residues by Watson-Crick and reverse Hoogsteen base pairing, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Akinrimisi, E.O., Sander, C. & Ts'o, P.O.P. Properties of helical polycytidilic acid. Biochemistry 2. 340–344 (1963).

    Article  CAS  Google Scholar 

  2. Langridge, R. & Rich, A. Molecular structure of helical polycytidylic acid. Nature 198, 725–728 (1963).

    Article  CAS  Google Scholar 

  3. Inman, R.B. Transitions of DNA homopolymers. J. molec. Biol. 9, 624–637 (1964).

    Article  CAS  Google Scholar 

  4. Hartman, K.A. Jr & Rich, A., The tautomeric form of helical polyribocytidylic acid. J. Am. chem. Soc. 87, 2033–2039 (1965).

    Article  CAS  Google Scholar 

  5. Gehring, K., Leroy, J.-L. & Guéron, M. A tetrameric DNA structure with protonated cytosine•cytosine base pairs. Nature 363, 561–565 (1993).

    Article  CAS  Google Scholar 

  6. Kang, C.H. et al. Crystal structure of intercalated four stranded d(C3T) at 1.4 Å resolution Proc. natn. Acad. Sci. U.S.A. 91, 11636–11640 (1994).

    Article  CAS  Google Scholar 

  7. Chen, L., Cai, L., Zhang, X. & Rich, A. Crystal structure of four stranded intercalated DNA, d(C4). Biochemistry 33, 13540–13546 (1994).

    Article  CAS  Google Scholar 

  8. Blackburn, E.H. Structure and function of telomeres. Nature, 350, 569–573 (1991).

    Article  CAS  Google Scholar 

  9. Kang, C.H., Zhang, X., Ratliff, R., Moyzis, R. & Rich, A. Crystal structure of four stranded Oxytricha telomeric DNA. Nature 356, 126–131 (1992).

    Article  CAS  Google Scholar 

  10. Smith, F.W. & Feigon, J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356, 164–168 (1992).

    Article  CAS  Google Scholar 

  11. Weisman-Shomer, P. & Fry, M. QUAD, a protein from hepacyte chromatin that binds selectively to guanine-rich quadruplex DNA. J. biol. Chem, 268, 3306–3312 (1993).

    CAS  PubMed  Google Scholar 

  12. Fang, G. & Cech, T.R. The β-subunit of Oxytricha protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993).

    Article  CAS  Google Scholar 

  13. Liu, Z., Frantz, J.D., Gilbert, W. & Tye, B.-K. Identification and characterization of a nudease activity specific for G4 tetrastranded DNA. Proc. natn. Acad. Sci. U.S.A. 90, 3157–3161 (1993).

    Article  CAS  Google Scholar 

  14. Schierer, T. & Henderson, E. A protein from Tetrahymena thermophila that specifically binds Parallel-stranded G4-DNA. Biochemistry 33, 2240–2246 (1994).

    Article  CAS  Google Scholar 

  15. Kang, C.H. et al. A stable loop in the crystal structure of the intercalated four stranded cytosine-rich metazoan telomere. Proc. natn. Acad. Sci. U.S.A. in the press.

  16. Meyne, J., Ratliff, R.L. & Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. natn. Acad. Sci. U.S.A. 86, 7049–7053 (1989).

    Article  CAS  Google Scholar 

  17. Riethman, H.C., Moyzis, R.K., Meyne, J., Burke, D.T. & Olson, M.V. Cloning human telomeric DNA fragments into Saccharomyces cerevisae using a yeast-artifical-chromosome vector. Proc. natn. Acad. Sci. U.S.A. 86, 6240–6244 (1989).

    Article  CAS  Google Scholar 

  18. Ahmed, S., Kintanar, A. & Hinderson, E. Nature struct. Biol. 1, 83–88 (1994).

    Article  CAS  Google Scholar 

  19. Leroy, J.-L., Guéron, M., Mergny, J.-L. & Hélène, C. Intermolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 22, 1600–1606 (1994).

    Article  CAS  Google Scholar 

  20. Radhakrishnan, I. & Patel, J.D. DNA triplexes: solution studies, hydration sites, energetics, interactions and function. Biochemistry 33, 11405–11416 (1994).

    Article  CAS  Google Scholar 

  21. Beal, P.A. & Derwan, P.B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363 (1991).

    Article  CAS  Google Scholar 

  22. Radhakrishnan, I., de los Santos, C. & Patel, D.J. Nuclear magnetic resonance structural studies of AAT base triple alignements in intramolecular purine•purine •pyrimidine DNA triplexes in solution. J. molec. Biol. 234, 188–197 (1993).

    Article  CAS  Google Scholar 

  23. Jayasena, S.D. & Johnston, B.H. Intermolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu•PuPy and Py•PuPy base triplets. Biochemistry 31, 321–327 (1992).

    Article  Google Scholar 

  24. Kim, S.H. et al. Three-dimensional structure of yeast phenylalanine transfer RNA: Folding of the ploynucleotide chain. Science 179, 285–288 (1973).

    Article  CAS  Google Scholar 

  25. Robertus, J.D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

    Article  CAS  Google Scholar 

  26. Kim, S.H. et al. The general structure of transfer RNA molecules. Proc. natn. Acad. Sci. U.S.A. 71, 4970–4974 (1974).

    Article  CAS  Google Scholar 

  27. Klug, A., Ladner, J. & Robertus, D. The structural geometry of co-ordinated base change in transfer RNA. J. molec. Biol. 89, 511–516 (1974).

    Article  CAS  Google Scholar 

  28. Marsh, R.E., Bierstedt, R. & Eichhorn, E.L. The crystal structure of cytosine-5-aceticacid. Acta Crystallogr. 15, 310–316 (1960).

    Article  Google Scholar 

  29. Brünger, A.T. X-PLOR A system for crystallography and NMR (Version 3.0). (Yale University, New Haven, CT 06511; 1992).

    Google Scholar 

  30. Brünger, A.T. Free R value: a novel statistical quantity for adressing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, I., Kang, C., Fredian, A. et al. Extension of the four-stranded intercalated cytosine motif by adenine•adenine base pairing in the crystal structure of d(CCCAAT). Nat Struct Mol Biol 2, 416–425 (1995). https://doi.org/10.1038/nsb0595-416

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0595-416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing