Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor

Abstract

We have designed synthetic peptide inhibitors of the interaction between IgE and its high affinity receptor, FcεRI. The structure of the second domain of CD2 was used as a modelling template for the second α-chain domain of FcεRI, the C-C′ loop of which has been implicated in the interaction with IgE. An L-amino acid peptide and a retro-enantiomeric D-amino acid peptide were designed to mimic the conformation of the C-C′ region. Both peptides were cyclized by disulphide bond formation between terminal cysteine residues, and show mirror image symmetry by circular dichroism analysis. The C-C′ peptide mimics act as competitive inhibitors of lgE binding. The cyclic L- and retro D-peptides exhibited KDs of approximately 3 μM and 11 μM, respectively, for IgE. Further, the peptides inhibit IgE-mediated mast cell degranulation, an in vitro model of an allergic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Banner, D.W. & Hadvary, P. Crystallographic analysis at 3.0-Å resolution of the binding to human thrombin of four active site-directed inhibitors. J. Biol. Chem. 266, 20085–20093 (1991).

    CAS  PubMed  Google Scholar 

  2. Navia, M.A. & Murcko, M.A. Use of structural information in drug design. Curr. Opin. Stuct. Biol. 2, 202–210 (1992).

    Article  CAS  Google Scholar 

  3. Chen, S. et al. Design and synthesis of a CD4 3-turn mimetic that inhibits human immunodeficiency virus envelope glycoprotein gpl2O binding and infection of human lymphocytes. Proc. Natl. Acad. Sci. USA 89, 5872–5876 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jameson, B.A., McDonnell, J.M., Marini, J.C. & Korngold, R. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature 368, 744–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Nakanishi, H. et al. Peptide mimetics ofthe thrombin-bound structure of fibrinopeptide A. Proc. Natl. Acad. Sci. USA 89, 1705–1709 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sato, M. et al. M. Design, synthesis and conformational analysis of yturn peptide mimetics of bradykinin. Biochem. Biophys. Res. Comm. 187, 999–1006 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. DeGrado, W.F. Design of peptides and proteins. Adv. Prot. Chem. 39, 51–124 (1998).

    Google Scholar 

  8. Ajo, D., Granozzi, G., Tondello, E. & Del Prada, A. Conformational flexibility of peptides containing αβ-unsaturated amino acid residues. I. Conformational analysis of N-acetyl-N′-methylamides of dehydroalanine and N-methyldehydroalanine. Biopolymers 19, 469–475 (1980).

    Article  CAS  Google Scholar 

  9. Rose, G.D., Gierasch, L.M. & Smith, J.A. Turns in peptides and proteins. Adv. Prot. Chem. 37, 1–109 (1985).

    CAS  Google Scholar 

  10. Rizo, J. & Gierasch, L.M. Constrained peptides - models of bioactive peptides and protein substructures. Ann. Rev. Biochem. 61, 387–418 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Miklavc, A., Kocjan, D., Avbelj, F. & Hadzi, D. in QSAR in Drug Design and Toxicology, (eds D. Hadzi & B. Jerman-Blazic) 185–190. (Elsevier Science Publishers B.V., Amsterdam, 1987).

    Google Scholar 

  12. Riske, F. et al. High affinity human IgE receptor (FceRl). Analysis of functional domains of the α-subunit with monoclonal antibodies. J. Biol. Chem. 266, 11245–11251 (1991).

    CAS  PubMed  Google Scholar 

  13. Robertson, M.W. Phage and Escherichia coli expression ofthe human high affinity immunoglobulin E receptor α-subunit ectodomain. J. Biol. Chem. 268, 12736–12743 (1993).

    CAS  PubMed  Google Scholar 

  14. Mallamaci, M.A. et al. Identification of sites on the human FcεRlα subunit which are involved in binding to human and rat IgE. J. Biol. Chem. 268, 22076–22083 (1993).

    CAS  PubMed  Google Scholar 

  15. Hulett, M.D., McKenzie, I.F.C. & Hogarth, P.M. Chimeric Fc receptors identify immunoglobulin-binding regions in human FcγRII and FcεRI. Eur. J. Immunol. 23, 640–645 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Scarselli, E., Esposito, G. & Traboni, C. Receptor phage: Display of functional domains of the high affinity IgE receptor on the M13 phage surface. FEBS Lett. 329, 223–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu, A., Tepler, I., Bemfrey, P.N., Berenstein, E.H & Leder, R. Human and rat mast-cell high-affinity immunoglobulin-E receptors - characterization of putative alpha-chain gene products. Proc. Natl. Acad. Sci. USA. 85, 1907–1911 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sutton, B.J. & Gould, H.L. The human IgE network. Nature. 366, 421–428 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Hogarth P.M. et al. Identification of the immunoglobulin binding regions of Fc-gamma-RII and Fc-epsilon-RI. Immunol. Rev. 125, 21–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Hibbs, M.L., Tolvanen, M. & Carpen, O. Membrane-proximal Ig-like domain of FcγRII (CD16) contains residues critical for ligand binding. J. Immunol. 152, 4466–4474 (1994).

    CAS  PubMed  Google Scholar 

  21. Hulett, M.D., Witort, E., Brinkworth, R.I., McKenzie, I.F.C. & Hogarth, P.M. Identification of the lgG binding site of the human low affinity receptorfor lgG FcγRII. J. Biol. Chem. 269, 15287–15293 (1994).

    CAS  PubMed  Google Scholar 

  22. Williams, A.F. & Barclay, A.N. The immunoglobulin superfamily - domains for cell surface recognition. Ann. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  23. Ryu, S.E. et al. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature. 348, 419–426 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, J. et al. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348, 411–418 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Brady, R.L. et al. Crystal structure of domains 3 and 4 of rat CD4: Relation to the NH2-terminal domains. Nature 260, 979–983 (1993).

    CAS  Google Scholar 

  26. Jones, E.Y., Davis, S.J., Williams A.F., Harlos, K. & Stuart, D.I. Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Padlan, E.A. & Helm, B.A. A modeling study of the α-subunit of human high-affinity receptor for immunoglobulin-E. Receptor 2, 129–143 (1992).

    CAS  PubMed  Google Scholar 

  28. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold: structural classification, sequence patterns and common core. J. Molec. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  29. Laskowski, R.A., MacArthur, M.W., Moss, D.S & Thornton, J.M. PROCHECK - A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Jackson, S. et al. Template-constrained cyclic peptides: Design of high affinity ligands for GPIIb/Illa. J. Amer. Chem. Soc. 116, 3220–3230 (1994).

    Article  CAS  Google Scholar 

  31. Guichard, G. et al. Antigenic mimicry of natural L-peptideswith retroinverso-peptidomimetics. Proc. Natl. Acad. Sci. USA 91, 9765–9769 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dintzis, H.M., Symer, D.E., Dintzis, R.Z., Zawadzke, L.E. & Berg, J.M. A comparison of immunogenicity of a pair of enantiomeric proteins. Proteins 16, 306–308 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Goodman, M. & Chorev, M. On the concept of linear modified retro peptide structures. Acc. Chem. Res. 12, 1–7 (1979).

    Article  CAS  Google Scholar 

  34. Guptsarma, P. Reversal of peptide backbone may result in the mirroring of protein structure.FEBS Lett. 310, 205–210 (1992).

    Article  Google Scholar 

  35. Shemyakin, M.M., Ovchinnikov, Yu.A. & Ivanov, V.T. Topochemical investigations on peptide systems. Angew. Chem. Int. Ed. Engl. 8, 492–499 (1969).

    Article  CAS  PubMed  Google Scholar 

  36. Chorev, M., Willson, G.C. & Goodman, M. A general approach to retroisomeric linear peptide synthesis. J. Amer. Chem. Soc. 99, 8075–8076 (1977).

    Article  CAS  Google Scholar 

  37. Bush, C.A., Sarkar, S.K. & Kopple, K.D. Circular dichroism of turns in peptides and proteins. Biochemistry 17, 491–494 (1978).

    Article  Google Scholar 

  38. Gierasch, L.M., Deber, C.M., Madison, V., Niu, C.H. & Blout, E.R. Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred β-turn conformers and implications for β turns in proteins. Biochemistry 20, 4730–4738 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Woody, R.W. Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins. Biopolymers 17, 1451–1467 (1978).

    Article  CAS  Google Scholar 

  40. Hider, R.C., Drake, A.F. & Tamiya, N. An analysis of the 225-230-nm CD band of elapid toxins. Biopolymers 27, 113–122 (1987).

    Article  Google Scholar 

  41. St. Pierre, S., Ingwall, R.T., Verlander, M.S. & Goodman, M. Conformational studies of sequential polypeptides containing lysine and tyrosine. Biopolymers 17, 1837–1848 (1978).

    Article  CAS  Google Scholar 

  42. Chang, C.T., Wu, C-S.C. & Yang, J.T. Circular dichroic analysis of protein conformations: inclusion of the β-turns. Analyt. Biochem. 91, 13–31 (1978).

    Article  CAS  PubMed  Google Scholar 

  43. Jonsson, U. et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11, 620–627 (1991).

    CAS  PubMed  Google Scholar 

  44. Karlsson, R., Michaelsson, A. & Mattsson, L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Methods 145, 229–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Metzger, H. et al. The receptor with high affinity for immunoglobulin-E. Ann. Rev. Immunol. 4, 419–470 (1986).

    Article  CAS  Google Scholar 

  46. Hulett, M.D. & Hogarth, P.M. Molecular basis of Fc receptor function. Adv. Immunol. 57, 1–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Hakimi, J. et al. The α subunit of the human IgE receptor (FcεRI) is sufficient for high affinity IgE binding. J. Biol. Chem. 265, 22079–22081 (1990).

    CAS  PubMed  Google Scholar 

  48. MacGlashan, D.W., Jr., Peters, S.P., Warner, J. & Lichtenstein, L.M. Characteristics of human basophil sulfopeptide leukotriene release:releasability defined as the ability of the basophil to respond to dimeric cross-links. J. Immunol. 136, 2231–2239 (1986).

    CAS  PubMed  Google Scholar 

  49. Ra, C. et al. Soluble human high-affinity receptor for IgE abrogates the gE-mediated allergic reaction. Int. Immunol. 5, 47–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone receptor interface. Science 267, 383–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. McDonnell, J.M., Blank, K.J., Rao, P.E. & Jameson, B.A. Direct involvement of the CDR3-like domain of CD4 in T helper cell activation. J. Immunol. 149, 1626–1630 (1992).

    CAS  PubMed  Google Scholar 

  52. Glocker, M.O., Borchers, C., Fiedler, W., Suckau, D. & Przybylski, M. Molecular characterization of surface topology in protein tertiary structure by amino-acylation and mass spectrometric peptide mapping. Bioconjugate Chem. 5, 83–90 (1994).

    Article  Google Scholar 

  53. Karlsson, R. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface- immobilized receptors. Analyt. Biochem. 221, 142–151 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Schwartzbaum, S. et al. Mapping of murine IgE epitopes involved in lgE-Fcε receptor interactions. Eur. J. Immunol. 19, 1015–1023 (1989).

    Article  Google Scholar 

  55. Evans, S.V. SETOR: hardware lighted three dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, J., Beavil, A., Mackay, G. et al. Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor. Nat Struct Mol Biol 3, 419–426 (1996). https://doi.org/10.1038/nsb0596-419

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0596-419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing