Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 Å resolution

Abstract

The three-dimensional structure of bovine papillomavirus has been determined to 9 Å resolution by reconstruction of high resolution, low dose cryo-electron micrographs of quench-f rozen virions. Although hexavalent and pentavalent capsomeres form star-shaped pentamers of the major capsid protein L1, they have distinct high-resolution structures. Most prominently, a 25 Å hole in the centre of hexavalent capsomeres is occluded in the pentavalent capsomeres. This raises the possibility that the L2 minor capsid protein is located in the centre of the pentavalent capsomeres. Inter-capsomere connections 10 Å in diameter were clearly resolved. These link adjacent capsomeres and are reminiscent of the helical connections that stabilize polyomavirus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lowy, D.R., Kirnbauer, R. & Schiller, J.T. Genital human papillomavirus infection. Proc. Natl. Acad. Sci. USA 91, 2436–2440 (1994).

    Article  CAS  Google Scholar 

  2. Baker, T.S. & Rayment, I. Papoviridae (Elsevier, 1987).

    Google Scholar 

  3. Liddington, R.C. et al. Structure of simian virus 40 at 3.8 Å resolution. Nature 354, 278–284 (1991).

    Article  CAS  Google Scholar 

  4. Stehle, T., Gamblin, S.J., Yan, Y. & Harrison, S.C. The structure of simian virus 40 refined at 3.1 Å resolution. Structure 4, 165–182 (1996).

    Article  CAS  Google Scholar 

  5. Yan, Y., Stehle, T., Liddington, R.C., Zhao, H. & Harrison, S.C. Structure determination of simian virus 40 and murine polyomavirus by a combination of 30–fold and 5–fold electron-density averaging. Structure 4, 157–164 (1996).

    Article  CAS  Google Scholar 

  6. Baker, T.S. et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J. 60, 1445–1456 (1991).

    Article  CAS  Google Scholar 

  7. Belnap, D.M. et al. Conserved features in papillomavirus and polyomavirus capsids. J. Mol. Biol. 259, 249–263 (1996).

    Article  CAS  Google Scholar 

  8. Unwin, P.N.T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol 94, 425–440 (1975).

    Article  CAS  Google Scholar 

  9. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  10. Kühlbrandt, W. & Wang, D.N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350, 130–134 (1991).

    Article  Google Scholar 

  11. Henderson, R. & Glaeser, R.M. Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16, 139–150 (1985).

    Article  CAS  Google Scholar 

  12. Unwin, N. Nicotinic acetylcholine receptor at 9Å resolution. J. Mol. Biol 229, 1101–1124 (1993).

    Article  CAS  Google Scholar 

  13. Jeng, T.-W., Crowther, R.A., Stubbs, G. & Chiu, W. Visualization of alpha-helices in Tobacco Mosaic Virus by cryo-electron microscopy. J. Mol. Biol 205, 251–257 (1989).

    Article  CAS  Google Scholar 

  14. Crowther, R.A. Procedures for three-dimentional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Phil Trans Roy Soc Lond B 261, 221–230 (1971).

    Article  CAS  Google Scholar 

  15. Fuller, S.D. The T=4 envelope of Sindbis Virus is organized by interactions with a complementary T=3 capsid. Cell 48, 923–934 (1987).

    Article  CAS  Google Scholar 

  16. Baker, T.S., Drak, J. & Bina, M. Reconstruction of three-dimensional structure of simian virus 40 and visualization of the chromatin core. Proc Natl. Acad. Sci. USA 85, 422–426 (1988).

    Article  CAS  Google Scholar 

  17. Zhou, Z.H. et al. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat. Struc. Biol. 2, 1026–1030 (1995).

    Article  CAS  Google Scholar 

  18. Thuman-Commike, P.A. et al. Three-dimesional structure of scaffolding-containing phage P22 procapsids by electron cryo-microscopy. J. Mol. Biol 260, 85–98 (1996).

    Article  CAS  Google Scholar 

  19. Zlotnick, A. et al. Dimorphism of Hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35, 7412–7421 (1996).

    Article  CAS  Google Scholar 

  20. Bπttcher, B. & Crowther, R.A. Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus. Structure 4, 165–182 (1996).

    Article  Google Scholar 

  21. Volpers, C., Schirmacher, P., Streeck, R.E. & Sapp, M. Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology 200, 504–512 (1994).

    Article  CAS  Google Scholar 

  22. Roden, R.B.S. et al. In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J. Virol. 70, 5875–5883 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D.R. & Schiller, J.T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 89, 12180–12184 (1992).

    Article  CAS  Google Scholar 

  24. Hagensee, M.E., Yaegashi, N. & Galloway, D.A. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol 67, 315–322 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagensee, M.E., Olson, N.H., Baker, T.S. & Galloway, D.A. Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J. Virol. 68, 4503–4505 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirnbauer, R. et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol. 67, 6929–6936 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, J., Stenzel, D.J., Sun, X.Y. & Frazer, I.H. Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J. Gen. Virol., 763–768 (1993).

    Article  CAS  Google Scholar 

  28. Roden, R.B.S. et al. Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. J. Virol. 68, 7570–7574 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaukroger, J.M. et al. Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J. Gen. Virol. 77, 1577–1583 (1996).

    Article  CAS  Google Scholar 

  30. Zhou, J., Sun, X.Y., Louis, K. & Frazer, I.H. Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence. J. Virol. 68, 619–625 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Conway, J.F. et al. Visualization of three-dimensional density maps reconstructed from cryoelectron micrographs of viral capsids. J. Struct. Biol. 116, 200–208 (1996).

    Article  CAS  Google Scholar 

  32. Salunke, D.M., Caspar, D.L.D. & Garcea, R.L. Self-assembly of purified polyomavirus capsid protein, VP1. Cell 46, 895–904 (1986).

    Article  CAS  Google Scholar 

  33. Griffith, J.P., Griffith, D.L., Rayment, I., Murakami, W.T. & Caspar, D.L.D. Inside polyomavirus at 25Å resolution. Nature 355, 652–654 (1992).

    Article  CAS  Google Scholar 

  34. Doorbar, J. & Gallimore, P.H. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a J. Virol. 61, 2793–2799 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Trus, B.L. et al. The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol. 263, 447–462 (1996).

    Article  CAS  Google Scholar 

  36. Conway, J.F., Duda, R.L., Cheng, N., Hendrix, R.W., Steven, A.C. Proteolytic and conformational control of virus capsid maturation: The bacteriophage HK97 system. J. Mol. Biol. 253, 86–99 (1995).

    Article  CAS  Google Scholar 

  37. Saxton, W.O. & Baumeister, W. The correlation of averaging of a regularly arranged bacterial cell envelope protein. J. Microscopy 127, 127–138 (1982).

    Article  CAS  Google Scholar 

  38. Conway, J.F. et al. The effects of radiation damage on the structure of frozen hydrated HSV-1 capsids. J. Struct. Biol. 111, 222–233 (1993).

    Article  CAS  Google Scholar 

  39. Unser, M. et al. Resolution Assessment of 3D Reconstruction by Spectral Signal-To-Noise Ratio. in 11th EUREM, Dublin, Ireland, 1996).

    Google Scholar 

  40. McGee, P.A., Trus, B.L. & Steven, A.C. Techniques to evaluate the performance of scanning microdensitometers in the digitization of electron micrographs. Micron 13, 221–228 (1982).

    Google Scholar 

  41. Cheng, R.H. et al. Functional implications of quasi-equivalence in a T= 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    Article  CAS  Google Scholar 

  42. Baker, T.S. & Cheng, R.H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  Google Scholar 

  43. Vrhel, M. & Trus, B.L. Multichannel Restoraton of Electron Micrographs. Proc. IEEE Int. Conf. Image Proc. 516–519 (B. Werner, ed., Washington, D.C., 1995).

    Google Scholar 

  44. Thévenaz, P., Ruttimann, U.E. & Unser, M. Iterative Multi-Scale Registration without Landmark. Proc. IEEE Int. Conf. Image Proc ( B. Werner, Ed., Washington, D.C., 1995).

    Google Scholar 

  45. Booy, F.P. & van Bruggen, E.F.J. On the suitability of the available cooling holders for low-dose work with the Philips EM400. Ultramicroscopy 13, 337–342 (1984).

    Article  Google Scholar 

  46. Brink, J., Sherman, M., Berriman, J. & Chiu, W. Charging phenomena observed on biological specimens in a 400-KV electron cryo-microscope. in Proceedings Microscopy Society of America (eds Bailey, G.W. & Garratt-Reed, A.J.) 118–119 (San Francisco Press, New Orleans, 1994).

    Google Scholar 

  47. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  Google Scholar 

  48. Baker, T.S., Newcomb, W.W., Booy, F.P., Brown, J.C. & Steven, A.C. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J. Virol. 64, 563–573 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Booy, F.P. et al. Liquid-crystalline, phage-like packing of encapsidated DNA in Herpes Simplex Virus. Cell 64, 1007–1015 (1991).

    Article  CAS  Google Scholar 

  50. Booy, F.P., Trus, B.L., Davison, A.J. & Steven, A.C. The capsid architecture of Channel Catfish Virus, an evolutionary distant herpesvirus, is largely conserved in the absence of discernible sequence homology with Herpes Simplex Virus. Virology 215, 134–141 (1996).

    Article  CAS  Google Scholar 

  51. Martino, R.L., Johnson, C.A., Suh, E.B., Trus, B.L. & Yap, T.K. Parallel computing in biomedical research. Science 265, 902–908 (1994).

    Article  CAS  Google Scholar 

  52. Johnson, C.A. et al. Orientation Determination in the 3D Reconstruction of Icosahedral Viruses using a Parallel Computer. in Suerpcomputing '94 B. Werner, Ed (IEEE Computer Society 550–559, Washington, DC, 1994).

    Chapter  Google Scholar 

  53. Marquardt, D.W. An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  54. Aldroubi, A., Trus, B.L., Unser, M., Booy, F.P. & Steven, A.C. Magnification mismatches between micrographs: corrective procedures and implications for structural analysis. Ultramicroscopy 46, 175–188 (1992).

    Article  CAS  Google Scholar 

  55. McKenna, R. et al. Atomic structure of single-stranded DNA bacteriophage φ174 and its functional implications. Nature 355, 137–143 (1992).

    Article  CAS  Google Scholar 

  56. Brünger, A.T. X-PLOR version 3.1. A system for X-ray crystallography and NMR, (Yale University Press, New Haven, CT, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trus, B., Roden, R., Greenstone, H. et al. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 Å resolution. Nat Struct Mol Biol 4, 413–420 (1997). https://doi.org/10.1038/nsb0597-413

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0597-413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing