Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observing conformational and activity changes of Tet repressor in vivo

Abstract

Effector triggered conformational changes of proteins such as regulators of transcription, receptors, or enzymes are the molecular basis for regulation in biology. Most proteins perform their biological functions intracellularly, in the presence of many potential interaction partners. Studies of conformational changes have mainly been performed in vitro using sophisticated physical and biochemical methods that usually require purified proteins. Here we describe the observation of conformational changes of Tet repressor in the cytoplasm of growing Escherichia coli cells, analyzed by ligand dependent disulfide crosslinking of cysteine residues substituted into mobile regions of the protein. The amount of protein undergoing the structural change is quantitatively linked to the concomitant induction of transcription of a reporter gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of the crystal structure of TetR–([Mg-tetracycline]+)2 with indicated locations of engineered cysteine residues.
Figure 2: Analyses of ligand dependent disulfide bond formation.
Figure 3: Comparison of the DNA reading heads in the tetracycline- and DNA-bound structures.
Figure 4: a,b Correlation of the structural transition between the DNA bound and tetracycline bound forms of TetR.

Similar content being viewed by others

References

  1. Forster, K. et al. Nucleic Acids Res. 27, 708–710 (1999).

    Article  CAS  Google Scholar 

  2. Hillen, W. & Berens, C. Annu. Rev. Microbiol. 48, 345–369 (1994).

    Article  CAS  Google Scholar 

  3. Hinrichs, W. et al. Science 264, 418–420 (1994).

    Article  CAS  Google Scholar 

  4. Orth, P., Schnappinger, D., Hillen, W., Saenger, W. & Hinrichs, W. Nature Struct. Biol. 7, 215–219 (2000).

    Article  CAS  Google Scholar 

  5. Tiebel, B. et al. J. Mol. Biol. 290, 229–240 (1999).

    Article  CAS  Google Scholar 

  6. Pook, E., Grimm, S., Bonin, A., Winkler, T. & Hillen, W. Eur. J. Biochem. 258, 915–922 (1998).

    Article  CAS  Google Scholar 

  7. Tiebel, B., Aung-Hilbrich, L.M., Schnappinger, D. & Hillen, W. EMBO J. 17, 5112–5119 (1998).

    Article  CAS  Google Scholar 

  8. Müller, G. et al. Nature Struct. Biol. 2, 693–703 (1995).

    Article  Google Scholar 

  9. Lee, G.F., Lebert, M.R., Lilly, A.A. & Hazelbauer, G.L. Proc. Natl. Acad. Sci. USA 92, 3391–3395 (1995).

    Article  CAS  Google Scholar 

  10. Hughson, A.G., Lee, G.F. & Hazelbauer, G.L. Protein Sci. 6, 315–322 (1997).

    Article  CAS  Google Scholar 

  11. Wu, J., Hardy, D. & Kaback, H.R. Biochemistry 37, 15785–15790 (1998).

    Article  CAS  Google Scholar 

  12. Bass, R.B. & Falke, J.J. Structure Fold. Des. 7, 829–840 (1999)

    Article  CAS  Google Scholar 

  13. Rietsch, A. & Beckwith, J. Annu. Rev. Genet. 32, 163–184 (1998).

    Article  CAS  Google Scholar 

  14. Derman, A.I., Prinz, W.A., Belin, D. & Beckwith, J. Science 262, 1744–1747 (1993).

    Article  CAS  Google Scholar 

  15. Prinz, W., Aslund, F., Holmgren, A. & Beckwith, J. J. Biol. Chem. 272, 15661–15667 (1997).

    Article  CAS  Google Scholar 

  16. Bessette, P.H., Aslund, F., Beckwith, J. & Georgiou, G. Proc. Natl. Acad. Sci. USA 96, 13703–13708 (1999).

    Article  CAS  Google Scholar 

  17. Orth, P. et al. J. Mol. Biol. 279, 439–447 (1998).

    Article  CAS  Google Scholar 

  18. Scholz, O., Thiel, A., Hillen, W. & Niederweis, M. Eur. J. Biochem. 267, 1–7 (2000).

    Article  Google Scholar 

  19. Weinmann, P. et al. Plant J. 4, 559–569 (1994).

    Article  Google Scholar 

  20. Stanssens, P. et al. Nucleic Acids Res. 17, 4441–4454 (1989).

    Article  CAS  Google Scholar 

  21. Miller, J.H. Experiments in molecular genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 1972).

    Google Scholar 

Download references

Acknowledgements

We thank G. Unden for the E. coli strain IMW200 and E. Pook and S. Grimm for monoclonal antibodies. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. B.T. was a recipient of a personal grant from the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hillen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiebel, B., Garke, K. & Hillen, W. Observing conformational and activity changes of Tet repressor in vivo. Nat Struct Mol Biol 7, 479–481 (2000). https://doi.org/10.1038/nsb0600_479

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0600_479

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing