Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tertiary core rearrangements in a tight binding transfer RNA aptamer

Abstract

Guided by an in vitro selection experiment designed to obtain tight binding aptamers of Escherichia coli glutamine specific tRNA (tRNAGln) for glutaminyl-tRNA synthetase (GlnRS), we have engineered a tRNA mutant in which the five-nucleotide variable loop sequence 5′-44CAUUC48-3′ is replaced by 5′-44AGGU48-3′. This mutant tRNA binds to GlnRS with 30-fold improved affinity compared to the wild type. The 2.7 Å cocrystal structure of the RNA aptamer–GlnRS complex reveals major rearrangements in the central tertiary core of the tRNA, while maintaining an RNA–protein interface identical to the wild type. The repacked RNA core features a novel hydrogen bonding arrangement of the trans Levitt pair G15–U48, a new sulfate binding pocket in the major groove, and increased hydrophobic stacking interactions among the bases. These data suggest that enhanced protein binding to a mutant globular RNA can arise from stabilization of RNA tertiary interactions rather than optimization of RNA–protein contacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of wild type and engineered tRNAs.
Figure 2: Electrophoretic gel mobility shift analysis for determination of the dissociation constant (Kd) of the var-AGGU engineered tRNA2Gln variant.
Figure 3: Stereo view showing difference electron density maps computed in the region of the variable loop of the var-AGGU mutant.
Figure 4: Structures of wild type and var-AGGU complexes.
Figure 5: van der Waals representation of bases in the tertiary core of the wild type (left) and var-AGGU (right) structures.
Figure 6: Overlay of mutant (black bonds) and wild type (gray bonds) tRNA structures in the region of the variable loop.
Figure 7: Plot of the average crystallographic thermal factor (B-factor) per nucleotide, as a function of nucleotide residue along the tRNA sequence.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Conn, G.L. & Draper, D.E. RNA structure. Curr. Opin. Struct. Biol. 8, 278–285 (1998).

    Article  CAS  Google Scholar 

  2. Ferre-D'Amare, A.R. & Doudna, J.A. RNA folds: insights from recent crystal structures. Annu. Rev. Biophys. Biomol. Struct. 28, 57–73 (1999).

    Article  CAS  Google Scholar 

  3. Cusack, S. RNA–protein complexes. Curr. Opin. Struct. Biol. 9, 66–73 (1999).

    Article  CAS  Google Scholar 

  4. Rould, M.A., Perona, J.J., Soll, D. & Steitz, T.A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science 246, 1135–1142 (1989).

    Article  CAS  Google Scholar 

  5. Ruff, M. et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  6. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  CAS  Google Scholar 

  7. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNALys and a T. thermophilus tRNALys transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334 (1996).

    Article  CAS  Google Scholar 

  8. Cusack, S., Yaremchuk, A. & Krikliviy, I., Tukalo, M. tRNAPro anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6, 101–108 (1998).

    Article  CAS  Google Scholar 

  9. Silvian, L.F., Wang, J. & Steitz, T.A. Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science 285, 1074–1077 (1999).

    Article  CAS  Google Scholar 

  10. Sankaranarayanan, R. et al. The structure of threonyl-tRNA synthetase-tRNAThr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97, 371–381 (1999).

    Article  CAS  Google Scholar 

  11. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  Google Scholar 

  12. Nissen, P., Thirup, S., Kjeldgaard, M. & Nyborg, J. The crystal structure of Cys-tRNACys-EFTu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7, 143–156 (1999).

    Article  CAS  Google Scholar 

  13. Schmitt, E., Panvert, M., Blanquet, S. & Mechulam, Y. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J. 17, 6819–6826 (1998).

    Article  CAS  Google Scholar 

  14. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  15. Stubenrauch, M. In vitro selection and characterization of tRNA-like substrates of E. coli glutaminyl-tRNA synthetase. Doctoral thesis, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; 1996.

  16. Carey, J. Gel retardation. Methods Enzymol. 208, 103–117 (1991).

    Article  CAS  Google Scholar 

  17. Rath, V.L., Silvian, L.F., Beijer, B., Sproat, B.S. & Steitz, T.A. How glutaminyl-tRNA synthetase selects glutamine. Structure, 6, 439–449 (1998).

    Article  CAS  Google Scholar 

  18. Arnez, J.G. & Steitz, T.A. Crystal structure of unmodified tRNAGln complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33, 7560–7567 (1994).

    Article  CAS  Google Scholar 

  19. Masquida, B., Sauter, C. & Westhof, E. A sulfate pocket formed by three G-U pairs in the 0.97 Å resolution X-ray structure of a nonameric RNA. RNA 5, 1384–1395 (1999).

    Article  CAS  Google Scholar 

  20. Leontis, N.B. & Westhof, E. Conserved geometrical base-pairing patterns in RNA. Quat. Rev. Biophys. 31, 399–455 (1998).

    Article  CAS  Google Scholar 

  21. Ferre-D'Amare, A.R., Zhou, K. & Doudna, J.A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).

    Article  CAS  Google Scholar 

  22. Convery, M.A. et al. Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nature Struct. Biol. 5, 133–139 (1998).

    Article  CAS  Google Scholar 

  23. Rowsell, S. et al. Crystal structures of a series of RNA aptamers complexed to the same protein target. Nature Struct. Biol. 5, 970–975 (1998).

    Article  CAS  Google Scholar 

  24. Lim, W.A. & Sauer, R.T. Alternative packing arrangements in the hydrophobic core of λ repressor. Nature 339, 31–36 (1989).

    Article  CAS  Google Scholar 

  25. Baldwin, E.P., Hajiseyedjavadi, O., Baase, W.A. & Matthews, B.W. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science 262, 1715–1718 (1993).

    Article  CAS  Google Scholar 

  26. Lim, W.A., Hodel, A., Sauer, R.T. & Richards, F.M. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc. Natl. Acad. Sci. USA 91, 423–427 (1994).

    Article  CAS  Google Scholar 

  27. Vetter, I.R. et al. Protein structural plasticity exemplified by insertion and deletion mutants in T4 lysozyme. Protein Sci. 5, 2399–2415 (1996).

    Article  CAS  Google Scholar 

  28. Jen-Jacobson, L. Structural-perturbation approaches to thermodynamics of site-specific protein–DNA interactions. Methods Enzymol. 259, 305–344 (1995).

    Article  CAS  Google Scholar 

  29. Jayaram, B., McConnell, K.J., Dixit, S.B. & Beveridge, D.L. Free energy analysis of protein–DNA binding: the EcoRI endonuclease–DNA complex. J. Comp. Phys. 151, 333–357 (1999).

    Article  CAS  Google Scholar 

  30. Allain, F.H.-T., Gubser, C.C., Howe, P.W.A., Nagai, K., Neuhaus, D. & Varani, G. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature 380, 646–650 (1996).

    Article  CAS  Google Scholar 

  31. Valegard, K., Murray, J.B., Stonehouse, N.J., van den Worm, S., Stockley, P.G. & Liljas, L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions. J. Mol. Biol. 270, 724–738 (1997).

    Article  CAS  Google Scholar 

  32. Zidek, L., Novotny, M.V. & Stone, M.J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Struct. Biol. 6, 1118–1121 (1999).

    Article  CAS  Google Scholar 

  33. Grodberg, J. & Dunn, J.J. OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1258 (1988).

    Article  CAS  Google Scholar 

  34. Nissan, T.A., Oliphant, B. & Perona, J.J. (1999). An engineered class I transfer RNA with a class II tertiary fold. RNA 5, 434–445.

    Article  CAS  Google Scholar 

  35. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 21, 8783–8798 (1987).

    Article  Google Scholar 

  36. McGann, R.G. & Deutcher, M.P. Purification and characterization of a mutant tRNA nucleotidyl transferase. Eur. J. Biochem. 106, 321–328 (1980).

    Article  CAS  Google Scholar 

  37. Hoben, P. et al. Escherichia coli glutaminyl-tRNA synthetase. J. Biol. Chem. 257, 11644–11650 (1982).

    Article  CAS  Google Scholar 

  38. Perona, J.J., Swanson, R., Steitz, T.A. & Soll, D. Overproduction and purification of Escherichia coli tRNA2Gln and its use in crystallization of the glutaminyl-tRNA synthetase-tRNAGln complex. J. Mol. Biol. 202, 121–126 (1988).

    Article  CAS  Google Scholar 

  39. Collaborative Computational Project Number 4, Acta Crystallogr. D 50, 760–776 (1994).

  40. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least-squares refinement program for macromolecular structures Acta Crystallogr. A 43, 489–501 (1987).

    Article  Google Scholar 

  41. Brunger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  42. Jovine, L. et al. Crystal structure of the Ffh and EF-G binding sites in the conserved domain IV of E. coli 4.55 RNA. Structure 8, 527–540 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Uhlenbeck and M. Derrick for encouragement and for communication of results prior to publication. We also thank B. Sproat and B. Beijer for the generous gift of QSI inhibitor. We are grateful to T. Earnest for assistance with data collection at ALS beamline 5.0.2, and to P. Allen for assistance with preparation of color figures. This work was supported by grants from the National Science Foundation (to J.J.P.) and from the Universitywide AIDS Research Program (to T.L.B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Perona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, T., Sherlin, L. & Perona, J. Tertiary core rearrangements in a tight binding transfer RNA aptamer. Nat Struct Mol Biol 7, 497–504 (2000). https://doi.org/10.1038/75910

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/75910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing