Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Access of ligands to cavities within the core of a protein is rapid

Abstract

We have investigated the magnitude and timescale of fluctuations within the core of a protein using the exchange kinetics of indole and benzene binding to engineered hydrophobic cavities in T4 lysozyme. The crystal structures of variant–benzene complexes suggest that relatively large scale fluctuations (1–2 Å) of backbone atoms are required for entry of these ligands into the core. Nonetheless, these ligands enter the cavities rapidly, with bimolecular rate constants of 106–107 M−1 s−1 and a low activation barrier, 2–5 kcal mol−1. These results suggest that protein cores undergo substantial fluctuations on the millisecond to microsecond timescale and that entry of small molecules into protein interiors is not strongly limited by steric occlusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, R.J.D. Energetics and dynamics of deterministic protein motion. Accts. Chem. Res. 27, 145–150 (1994).

    Article  CAS  Google Scholar 

  2. Karplus, M. & McCammon, J.A. The dynamics of proteins. Sci. Amer. April issue 4, 42–51 (1986).

    Article  Google Scholar 

  3. Debrunner, P.G. & Frauenfelder, H. Dynamics of proteins. A. Rev. Phys. Chem. 33, 283–299 (1982).

    Article  CAS  Google Scholar 

  4. Gurd, F.R.N. & Rothgeb, T.M. Motions in proteins. Adv. Prot.Chem. 33, 73–165 (1979).

    CAS  Google Scholar 

  5. Karplus, M. & McCammon, J.A. Dynamics of proteins: elements and function. A. Rev. Biochem. 52, 263–300 (1983).

    Article  CAS  Google Scholar 

  6. Case, D.A. & Wright, P.E. Determination of high-resolution NMR structures of proteins, in NMR of Proteins (eds G. M. Clore & A.M. Gronenborn) 53–91 (MacMillian, London; 1993).

    Google Scholar 

  7. Smith, J.C. Protein dynamics: comparison of simulation with elastic neutron scattering experiments. Q. Rev, Biophys. 24, 227–291 (1991).

    Article  CAS  Google Scholar 

  8. McCammon, J.A., Lee, C.Y. & Northrup, S.H. Side-chain rotational isomerization in proteins: a mechanism involving gating and transient packing defects. J. Am. Chem. Soc. 105, 2232–2237 (1983).

    Article  CAS  Google Scholar 

  9. Kneller, G.R. & Smith, J.C. Liquid-like side-chain dynamics in myoglobin. J. Mol. Bio. 242, 181–185 (1994).

    Article  CAS  Google Scholar 

  10. Wagner, G. NMR relaxation and protein mobility. Curr. Op. Struct. Biol. 3, 748–754 (1993).

    Article  CAS  Google Scholar 

  11. Palmer, III A. G., Dynamic properties of proteins from NMR spectroscopy. Curr. Op. Biotech. 4, 385–391 (1994).

    Article  Google Scholar 

  12. Campbell, I.D., Dobson, C.M. & Williams, R.J.P. Proton magnetic resonance studies of the tyrosine residues of hen lysozyme -assignment and detection conformational mobility. Proc. R. Soc. Lond. B. 189, 503–509 (1975).

    Article  CAS  Google Scholar 

  13. Wüthrich, K. & Wagner, G. NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett. 50, 265–268 (1975).

    Article  Google Scholar 

  14. Tilton, R.F. & Kuntz, I.D. Nuclear magnetic resonance studies of Xenon- 129 with myoglobin and hemoglobin. Biochemistry. 21, 6850–6857 (1982).

    Article  CAS  Google Scholar 

  15. Tilton, R.F., Kuntz, I.D. & Petsko, G.A. Cavities in proteins: Structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984).

    Article  CAS  Google Scholar 

  16. Otting, G., Liepinsh, E. & Wüthrich, K. Proton exchange with internal water molecules in the protein BPTI in aqueous solution. J. Am. Chem. Soc. 113, 4363–4364 (1991).

    Article  CAS  Google Scholar 

  17. Otting, G. & Wüthrich, K. Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J. Am. Chem. Soc. 111, 1871–1875 (1989).

    Article  CAS  Google Scholar 

  18. Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics: use of the time dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112, 9161–9175 (1990).

    Article  CAS  Google Scholar 

  19. Brooks III, C.L., Karplus, M. & Pettitt, B.M. Adv. in Chem. Phys.: Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics vol. 71 (eds I. Prigogine & S.A. Rice) 111–116 (John Wiley & Sons, New York; 1988).

    Book  Google Scholar 

  20. Lakowicz, J.R. & Weber, G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond timescale. Biochemistry 12, 4171–4179 (1973).

    Article  CAS  Google Scholar 

  21. Calhoun, D.B., Englander, S.W., Wright, W.W. & Vanderkooi, J.M. Quenching of room temperature protein phosphorescence by added small molecules. Biochemistry 27, 8466–8474 (1988).

    Article  CAS  Google Scholar 

  22. Eriksson, A.E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992).

    Article  CAS  Google Scholar 

  23. Eriksson, A.E., Baase, W.A., Wozniak, J.A. & Matthews, B.W. A cavity- containing mutant of T4 lysozyme is stabilized by a buried benzene. Nature 355, 371–373 (1992).

    Article  CAS  Google Scholar 

  24. Morton, A., Baase, W.A. & Matthews, B.W. Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry. 34, 8564–8575 (1995a).

    Article  CAS  Google Scholar 

  25. Morton, A. & Matthews, B.W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry 34, 8576–8588 (1995).

    Article  CAS  Google Scholar 

  26. Sangster, J. Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18, 1111–1229 (1989).

    Article  CAS  Google Scholar 

  27. McConnell, H.M. Reaction rates by nuclear magnetic resonance. J Chem. Phys. 28, 430–431 (1958).

    Article  CAS  Google Scholar 

  28. Eigen, M. & Hammes, G.G. Elementary steps in enzyme reactions, in Adv. in Enzym. 25, 1–38 (1963).

    Google Scholar 

  29. Fersht, A. In Enzyme Structure and Mechanism, 2nd ed. 150 (W. H. Freeman & Co., New York; 1985)

    Google Scholar 

  30. Berry, R.S., Rice, S.A. & Ross, J. In Physical Chemistry 30, 1157–1164 (John Wiley & Sons, New York; 1980).

    Google Scholar 

  31. Streitwieser, A. & Heathcock, C.H. In Introduction to Organic Chemistry, 3rd ed. 70–72 (Macmillian, New York, 1985).

    Google Scholar 

  32. Baldwin, E.P. & Matthews, B.W. Core-packing constraints, hydrophobicity and protein design. Curr. Op. in Biotech. 5, 396–402 (1994).

    Article  CAS  Google Scholar 

  33. Lumry, R. & Rosenburg, A. The water basis for mobile defects in proteins and the role of these defects in function. Colloqu. Int. CNRS 246, 55–63 (1975).

    Google Scholar 

  34. Woodward, C., Simon, I. & Tuchsen, E. Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135–160 (1982).

    Article  CAS  Google Scholar 

  35. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quart. Rev. in Biophys. 16, 521–655 (1984).

    Article  Google Scholar 

  36. Gregory, R. & Lumry, R. Hydrogen exchange evidence for distinct structural classes in globular proteins. Biopolymers 24, 301–326 (1985).

    Article  CAS  Google Scholar 

  37. Richards, F. Packing defects, cavities, volume fluctuations and access to the interior of proteins. Carlsberg Res. Commun. 44, 47–63 (1979).

    Article  CAS  Google Scholar 

  38. Lumry, R. & Gregory, R.B. Free energy management in protein reactions: concepts, complications and compensation, in The Fluctuating Enzyme (ed. G.R Welch) 1–190 (John Wiley and Sons, New York; 1986).

    Google Scholar 

  39. Matthews, S.J., Jandu, S.K. & Leatherbarrow, R.J. 13C NMR study of the effects of mutation on the tryptophan dynamics in chymotrypsin inhibitor 2: correlations with structure and stability. Biochemistry 32, 657–662 (1993).

    Article  CAS  Google Scholar 

  40. Wüthrich, K., Wagner, G., Richarz, R. & Braun, W. Correlations between internal mobility and stability of globular proteins. Biophys. J. 32, 549–560 (1980).

    Article  Google Scholar 

  41. Olsen, J.S., Mims, M.P. & Reisberg, P.I. Kinetic mechanisms of ligand binding to heme proteins in Hemoglobin and Oxygen Binding (C. Ho, ed.) 392–398 (Elsevier North Holland, Inc., New York; 1982).

    Google Scholar 

  42. Reisberg, P.I. & Olson, J.S. Rates of isonitrile binding to the isolated α and β subunits of human hemoglobin. J. Biol. Chem. 255, 4151–4158 (1980).

    CAS  PubMed  Google Scholar 

  43. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I.C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  44. Matsumura, M. & Matthews, B.W. Control of enzyme activity by an engineered disulfide bond. Science 243, 792–794 (1989).

    Article  CAS  Google Scholar 

  45. Muchmore, D.C., McIntosh, L.P., Russell, C.B., Anderson, D.E. & Dahlquist, F.W. Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods in Enzymology 177, 44–73 (1989).

    Article  CAS  Google Scholar 

  46. Zuiderweg, E.R.B. A proton-detected heteronuclear chemical-shift correlation experiment with improved resolution and sensitivity. J. Magn. Reson. 86, 346–357 (1990).

    CAS  Google Scholar 

  47. McIntosh, L.P., Wand, A.J., Lowry, D.F., Redfield, A.G. & Dahlquist, F.W. Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 29, 6341–6362 (1990).

    Article  CAS  Google Scholar 

  48. Lu, J. The Stability and Folding of Bacteriophage T4 Lysozyme. Doctoral Thesis, University of Oregon, 1992.

  49. Sandström, J. In Dynamic NMR Spectroscopy, 6–19 (Academic Press, London; 1982).

    Google Scholar 

  50. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  Google Scholar 

  51. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feher, V., Baldwin, E. & Dahlquist, F. Access of ligands to cavities within the core of a protein is rapid. Nat Struct Mol Biol 3, 516–521 (1996). https://doi.org/10.1038/nsb0696-516

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0696-516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing